Module Technical Documentation

ENRAPEAN Document Number
SPALLATION .
SOURCE Date Monday, 20 April 2015
Revision
State Draft

LLRF System For ESS — Software Module Technical Documentation

Author Affiliation Reviewer Approver

Ursa Rojec Cosylab Klemen Strnisa

Alexander Sodergvist ~ Cosylab

Module Technical Documentation

Document Number
Date

20 April 2015

DOCUMENT REVISION HISTORY
Version Reason for revision Date
1.0 Initial version 2014-03-07
11 e First review comments 2014-06-12
o Added asynReason list and NDS Class descriptions
1.2 e Adding new functionality according to firmware updates, | 2014-12-22
e Added demo application description
¢ Removed obsolete appendices
e Added sis8300noA0.db, sis8300Reg.db and
s1s830011rfReg.db to description
e Fixed GUI instructions — added new screenshots
e Second review comments 2015-01-21
13 e FF Table Speed Settings 2015-01-23
¢ Modulator Ripple Filter Settings
14 e Added EPICS Status tab screenshot, updated others 2015-02-26
2.0 Major changes due to 2015-02-27
e Transition from MA to 1Q control in firmware
e Changes in the generic sis8300 epics module
2.1 e Added Signal Monitoring 2015-04-15
e Added New OPI screenshots
e Added Demo Screenshots
o Added RTM Settings
e Added Interlock
e Added Special Operating Modes
2.2 e General Update of exported NDS parameters 2015-04-20
e Added Demo Application (partially — GUI)
2.3 e Updated the epics module to the latest changes in the code | 2015-05-26
e Added Control Table Generation OPI
e Added Timing OPI
e Added Calibration Procedure OPI

2(72)

Module Technical Documentation

Document Number
Date

20 April 2015

Added Special Operating Modes OPI

Added demo ioc startup settings

Added demo archiver explanation

Added timestamping information

Added hardware setup section with figures

Added rtm description settings

Added information section — where to find

Fixed the errors in current development system
information (Al6 is hijacked also)

Updated the Main and overview screenshot and
description

Added python, numpy and pyepics installation
instructions

Added archiver installation and startup information
Removed cavity and reference DC offset

2.4 Updated Scripts section 2015-06-01
Added typical Operation Section
Updated the Main screen 2015-06-03
2.5 Added RTM connection Instructions 2015-06-11
2.6 Removed the user manual — it is now available on the wiki | 2015-10-06
2.7 Update after major code refactoring 2016-01-15
2.8 Fixed broken references and figures. 2016-12-08

Add notch filter
Added writing of control tables PV
New Channel Data Ready PV

3(72)

Module Technical Documentation

Document Number
Date 20 April 2015

TABLE OF CONTENTS

1
2

~N o o b~

ADOUL THIS DOCUMENT ...ttt 6
THEOrY OF OPEIALIONcueeiiiecie ettt se e s be s ae e s b e ste e b e sbeeteentesreeneenre e 7
2.1 Overview of Hardware and Software COMPONENES..........ceveieeiieieieeriese e 7
2.2 HArdware OPEIALIONccvitiriireieeee ettt n et sb b nnennen e 9
2.3 SOTtWAIE OPEIALION.eitiiiiitiieetet ettt nb e n e n e 10
231 CONLIOL TABIES ... 11
2.3.2 Control System State MaChINecooiiiiiiiieee e 12
ATCRITECIUIE ...ttt bt et b e nas 14
3.1 KENEI MOTUIE. ..o 14
3.1.1 IMPIEMENTALION.c.viiiiie e re st et e s reeneesresre s 14
3.2 USEI-SPACE LIDIAIY ...ooviiiicii ittt sttt sttt e a e be e sreera b nre s 14
3.21 IMPIEMENTATION ...ttt 14
3.2.2 EXPOIted INTEITACEoviieeeeie e 14
3.2.3 Generic sis8300 interface and its altered functionality in LLRF context...................... 16
3.3 EPICS DeVice SUPPOIt - NDS ..o 18
3.3.1 RESPONSIDIIITIESvecvviiicic e e et re e e 18
3.3.2 IMPIEMENTALION.......c.oiiiicic e r e s be e s reereestesre s 19
333 Driver Initialization Parameterscooieriiiieiiee e 20
3.34 EXPOrEd INTEITACEviiiciie ettt be e e 20
3.4 EPICS DAADASEccviiiieieieeeeeieee ettt 42
34.1 EXPOrted INTEITACEovieiieicie e 42
3.5 STAMTUD SNEPPELS. ..ttt bbbt 67
3.6 Dm0 PPIICALION ..ottt 67
3.7 SOTIWAIE WEISION ...ttt bbbttt enes 67
3.8 Learning FEEA FOIWAITc.coviiiiie ettt st sre e be st 67
RETEIBICES ...ttt bbbt bt b ettt 69
LiSt OF ADDIEVIALIONScuiieiiiteii e 70
APPENDIX: Current Development SYSTEIM.........ccuiiiiiiiiieieieiese e 71
APPENDIX: Control Table GENErationcceiiiiiiiiiiieieeesese s 72

4(72)

Module Technical Documentation
Document Number
Date 20 April 2015

5(72)

Module Technical Documentation
Document Number
Date 20 April 2015

1 ABOUT THIS DOCUMENT
As this is a rather long description of the LLRF software functionality we understand that reading it all in one

piece takes a lot of time. For a feel of the software workings we recommend that you at least take a
look at http 1 user manual

Theory of Operation and EPICS Device Support - NDS (Specifically: 3.3.13.3.2, 3.3.3 and 3.3.4)
chapters.

This document is a software reference manual. For the user manual see:

https://ess-ics.atlassian.net/wiki/display/HAR/Low+Level+RF+System

http 1 user manual

6(72)

https://ess-ics.atlassian.net/wiki/display/HAR/Low+Level+RF+System

Module Technical Documentation
Document Number
Date 20 April 2015

2 THEORY OF OPERATION

The LLRF system will be responsible for controlling the field in accelerating cavities throughout the
entire accelerator, which includes RFQ, DTL, Spoke cavities and medium and high beta cavities. Each
cavity will have a separate klystron, a topology which implies the use of a separate LLRF system for
each cavity — Klystron pair (from now on referred to as RF cell). The system will be responsible for
maintaining the phase and amplitude stability of the field in that particular cavity, which will be achieved
by monitoring the current state of the RF cell and providing a driving signal for the klystron.

At the core of the LLRF system will be a LLRF controller board that will use a combination of feedback
and feedforward to compensate for field perturbations such as Lorentz force detuning, microphonics,
bunch charge fluctuations, etc. Each of the feedback and feedforward will be responsible for a different
type of perturbations; FF will try to compensate for repetitive (occurring on pulse to pulse bases), and
FB for random errors.

The LLRF controllers will be implemented on the same hardware for all the RF cells along the
accelerator.

In addition to field control, the LLRF system will also be included in cavity resonance control or
frequency tuning which will be done in two steps — coarse frequency tuning with stepper motors and
fine tuning with piezo motors. None of the mentioned systems exists yet.

2.1 Overview of Hardware and Software Components
General overview of software and hardware components of the LLRF system is depicted on Figure 1.

Hardware — the LLRF controller board — is represented by block 3 and will provide generic digitizer
interface (3.1) alongside custom, LLRF specific firmware (3.2). The software part will be responsible
for integration of the board into the ICS and will cover blocks 4, 5, 6, 10 and 11.

The LLRF controller board will be implemented on the same hardware for all the RF cells along the
accelerator. The controller board is realized on a Struck SIS8300L digitizer board [1]. This as an AMC
compliant to the MTCA.4 standard, which serves as the digital processing part of the LLRF. All the
digital processing and control logic is realized on the on-board FPGA, by extending the generic Struck
digitizer functionality. The analogue front end is realized on the RTM and can be different. The choice
of the RTM will depend on more factors, the more obvious one of them being the RF frequency.
Currently there are three types of RTMs being used during development SIS8900 [2], DWC8VML [3]
and DS8VML1 [no manual yet]

1(72)

Module Technical Documentation
Document Number
Date 20 April 2015

Operator screens 12

High-level services
(Archiving, Alarms, Post-mortem, Logging,
{

EPICS driver {NDS) | 7 Timing recejver EPICS & Driver

User space
Device driver
Kernel

backplane

Digitizer

d memory Custom me
i Interface

Timing receive
Custam data processing Iming recefver

ditioning

Sensors/modulators/actuators

Figure 1 LLRF software and hardware components and their interactions to other parts of ICS (timing system,
MPS). The software part of LLRF system has to cover blocks 4, 5, 6, 10 and 11. Block 3 represents
the LLRF controller board.

8(72)

Module Technical Documentation
Document Number
Date 20 April 2015

2.2 Hardware Operation

In order to define the software architecture, some knowledge of hardware operation is needed. Figure 2
presents a LLRF control loop of one RF cell.

Klystron

——Power Grid—/
modulator

u Pz Ctrl
. fine grain tuning
Circulator

LLRF system:
@, 4@ Motion control
Motor Ctrl
l coarse grain tuning

Load l@

T ©

of

LLRF system:
Pl-controller

Phase Reference Clk 352.21 MHz

Warning/Errors

LLRF system:
Master Oscillator Monitoring & Storing

Figure 2 represents LLRF control loop an input signals for the LLRF controller board (labelled as LLRF system).
Figure was taken from [1].

The PI controller is realized on the FPGA of the SIS8300L [1] digitizer board, and the 10 input signals
arrive to the board over an RTM, connected to the board. The monitoring and storing part on Figure 2
represents the software — the scope of this document — while the Motion control part is not yet realized.
The blue components are out of scope of LLRF as is the Master oscillator, which provides the RF
reference.

The LLRF controller board takes 10 analogue inputs (Figure 2, Table 1):

Al Channel Number Signal

1 Cavity probe

LLRF controller output (read back)

Pre-amplifier output

Klystron output

Circulator reflected signal

Cavity drive signal

Cavity reflected signal

0 (N | o o b DN

Master oscillator

9(72)

Module Technical Documentation
Document Number
Date 20 April 2015

9 Klystron modulator U

10 Klystron modulator |

Table 1 List of LLRF controller board Al signals. At this point in time, the development version does not yet
include all the signals. See APPENDIX: Current Development System.

that represent the current state of the RF cell. The signals serve as input for the LLRF control loop and
get processed by an FPGA located on the Struck SIS8300L AMC (LLRF controller board). Result of
processing are two analogue signals (phase and amplitude) used to drive the klystron.

In addition to 10 Al channels, the FPGA also provides two virtual channels, corresponding to Pl error
for magnitude and angle controller. The term virtual channel is used for the channels that for all software
purposes behave like analogue input channels but rather than belonging to a direct physical input on the
RTM, they are a result of some processing done by the controller. From the software point of view they
are just waveforms stored in controller memory, which makes the interface to them undistinguishable
from a physical data channel.

Main logic of the LLRF system is implemented on the LLRF controller board that processes the input
in several functional blocks:

PI regulator,

Feed Forward correction (FF),

Klystron linearization block,

e e

High Voltage Feed forward (HV FF),

5. Amplitude Limiter

Table 2: FPGA Processing Blocks. At this point in time, the development version does not include all the blocks.
See APPENDIX: Current Development System.

Each of the blocks requires separate configuration which can be specific to an RF cell. The configuration
is thus not provided by hardware, but needs to be set trough software by user. Having configurable
blocks is just one of the features that allow for the use of same LLRF controller boards throughout the
accelerator as mentioned in 1.

2.3 Software Operation

The software part of the LLRF control system is responsible for integrating the LLRF controller board
into the ICS. It needs to provide a configuration for each of the HW functional blocks, readback of HW
status and run the Learning Feed Forward algorithm (LFF). The algorithm is not a part of CS integration
and is thus out of scope of this document. Software blocks, along with systems they connect to, are
represented on Figure 1.

The larger part of SW responsibility is thus providing a communication between the user and the HW.
HW status needs to be continuously updated (read from the LLRF controller) and provided to the user.
This includes providing the user with access to all the Al signals listed in Table 1 and PI error as well

10(72)

Module Technical Documentation

Document Number

Date

20 April 2015

as read back of current configuration, represented in Table 2. In the other direction, from user to HW,
the data is sent on demand rather than continuously.

2.3.1 Control Tables

The LLRF controller will require several control tables during operation, they are listed in Table 3:

1. Set Point table (SP)

2. Feed Forward table (FF)

3. Feed Forward Correction Table (FF_CORR), the result of LFF (see 3.4.1.10)
4. Klystron linearization table

5. High Voltage Feed forward table (HV FF)

Table 3 List of LLRF controller control tables, see also Table 2.

Control tables 4 and 5 can be directly mapped to FPGA functional blocks 3 and 4 (Table 3), while
control tables 2 and 3 together constitute the configuration of FF functional block 2. Control table 1
represents the desired phase/amplitude (1/Q) of the field during ramp up phase.

There is a big conceptual difference between the tables 1 - 3 and tables 4 - 5. The last two tables
compensate for non-ideal behaviour of physical LLRF components (nonlinear behaviour of the klystron
and ripple and droop from the modulator output), while tables 1 — 3 concern themselves with the RF
field. The modulator and klystron get calibrated during the commissioning phase, so the tables 4 and 5
remain constant during operation. This however, is not the case with tables 1 — 3. The three tables are
responsible for RF field control and can change on pulse-to-pulse basis.

The method for generation of control tables is not yet defined, some comments on this can be found in
the APPENDIX: Control Table Generation.

11(72)

Module Technical Documentation
Document Number
Date 20 April 2015

2.3.2 Control System State Machine

2.3.2.1 Hardware State Machine

X_trigger : commes from
timing control system

LLRF
operational

Monitoring and storing of system signals.
SW: R/W memory Plcontroller active

New_pulse_type *

not allowed

\t these transitions all visible new

parameters are taken into use

SW: Allmemory ** At this transition interrupt
accesses allowed PULSE O is raised
TTT a inter
(

Pulse_coming_trigger*

Active No-pulse Operations
Init:
SW: Write SP and FF tables, R/W registers.
re FPGA: Nothing.
PMS_trigger Idle:
= SW: Read data, R/W tables, R/W registers.
Active Pulse FPGA: Nothing.
Pulse setup:

SW: R/W registers.
FPGA: Load SP/FF tables, load ctrl parameters.
Ty — Active no-pulse:
. vis_trigee SW: Read from memory. R/W registers.
Wait ADC o FPGA: Pl controller active. Store external signals.
Active pulse:

SW: Read from memory. R/W registers.

FPGA: Pl and FF active. Store external signals.
Wait ADC:

SW: Read from memory. R/W registers.

FPGA: Stop cavity field.
Pulse end:

SW: Read from memory. R/W registers.

FPGA: Store Pl error to memory.

Pulse_end_trigger

Internal_signal

Pulse end

PMS:
PMS*** SW: Anything.
FPGA: Nothing.

Figure 3 Hardware state machine

The firmware has its own sate machine (depicted on Figure 3) that is tightly linked to three cavity states
— prepare for beam, beam and no beam. These states are defined with 3 timing events plus one PMS
event, which is why the LLRF board will need 4 trigger inputs, each for one timing event:

Event Event Source Software Interrupt
PULSE_COMMING Timing System none
PULSE_START Timing System none
- - yes (after controller finishes and goes to
PULSE_END Timing System IDLE)
PMS PMS?? yes

Table 4 Timing events relevant for the operation of the LLRF system.

PMS event gets emitted only in case of machine error, but the other three events are emitted for every

12(72)

Module Technical Documentation
Document Number
Date 20 April 2015

pulse. They will always have to be present during normal operation. The PULSE_COMMING event
will tell the LLRF when to start ramping up (playing the SP table), PULSE_START will tell the LLRF
to hold the field (play the FF table) and PULSE_END will tell it to turn the field off (or ramp down).
Events PULSE_ COMMING and PULSE_END define the ACTIVE state, during which the controller
is busy with the pulse. During this phase, the control loop is running and signals are being sampled and
stored into board memory (storage is optional and set by NSAMPLES parameter, sampling and
processing of the signal is not — see 0).

2.3.2.2 Software State Machine

The software state machine is realized on the EPICS level and is a trimmed version of the hardware state
machine, meaning that it has less states. It groups all the states where the LLRF is operational (green
area on Figure 4) into a single state called ON, which basically indicates that the controller is running.
The INIT and PMS states are mapped to corresponding hardware states. In addition to these three, the
software state machine also defines two additional states — ERROR and OFF. The detailed description
of the states and their transitions can be found in 3.3.4.1.

Software will only access the board during the IDLE phase (restriction will be enforced at EPICS level),
where it has full read and write access to registers and memory. To inform the SW when IDLE state
begins, the controller will emit a PULSE_DONE interrupt when transition from PULSE_END to IDLE
state occurs.

Upon receiving the PULSE_DONE interrupt, the SW will know that the controller is done with the
pulse. It should than fetch the ADC (Table 1) and internal signal samples (PI error) from the controller
memory and make the data from the past pulse (=sampled during ACTIVE phase) available to the user.
After this, the SW write the new control tables to controller memory and perform any parameter setup
that needs to be done before the next pulse arrives. When finished with setup, the SW will arm the board,
so that it will start waiting for the next PULSE_COMMING trigger.

ARM

A
Review ° it for pulse Done,
parameters ept new values
Read pulse data, \
Write new values PULSE 5
DONE .
e PMS interrupt or o

Communication Error

Figure 4: Software state machine.

13(72)

Module Technical Documentation
Document Number
Date 20 April 2015

3 ARCHITECTURE

Integration of the LLRF controller board into the ICS will be done in several blocks, as depicted in
Figure 1. At the top level there is an Expert Screen (blocks 10 and 11 on Figure 1) that connects to the
EPICS database (block 6 on Figure 1). The two blocks provide the user with a functionally
sensible/hardware independent overview of the LLRF system, and enable access to the LLRF controller
board from GUI or another CA client. Integration of card into EPICS is done through device support
with the help of NDS framework. NDS (block 5 on Figure 1) provides communication between EPICS
database and user-space API (block 4 on Figure 18) and is responsible for board configuration and
tracking of the controller state. The two lowest lying blocks, kernel module and user-space library, are
the only two layers that are aware of actual hardware specific implementation (such as register map).

3.1 Kernel Module

Kernel module represents the lowest lying SW layer and has direct access to HW registers. Its
responsibility is to hold a list of all attached boards, to provide a register map, through which the HW
registers are accessed from SW and handle DMA transfers to and from the board.

Since the layer provides raw access to HW registers, intimate knowledge of the LLRF controller register
map is required to access the layer directly. To hide this, a user-space library is provided, which exports
LLRF controller functionality in terms of descriptive function calls. In normal operation applications
than never accesses the kernel module directly, but use the user-space library instead.

3.1.1 Implementation

A kernel module that handles DMA transfers, mapping of board registers and access to the board trough
standard dev interface was already developed as part of support for generic Stuck SIS8300 firmware [2].
The existing module covers all the functionality and can be reused as-is.

3.2 User-space Library

The goal of user-space library is to hide the HW specific implementation by exporting an API that covers
all the functionality provided by the controller board. The LLRF addition to the generic sis8300 user
space library is stateless, meaning that it does not store any data but consists solely of function calls and
structure definitions. None of the parameters, settings or data tables that are already stored in board’s
memory or registers are duplicated here.

The user space API provides communication between the kernel module and top level applications. In
the case of LLRF controller this “application” will be the NDS, but there are no actual restraints to using
the user-space API from other (not EPICS related) applications.

3.2.1 Implementation

Since the functionality of generic Struck firmware is already supported by [4], the LLRF specific
firmware support will be added as a separate library that will depend on the generic one. An application
that will want to use the LLRF specific functionality will thus have to include both libraries.

3.2.2 Exported interface

Exported interface is an API that covers the functionality of the LLRF controller [4]. Generic Struck

14(72)

Module Technical Documentation
Document Number
Date 20 April 2015

firmware for the SIS8300L digitizer is not included in support but provided by a separate library.

3.2.2.1 Conversion to and from device data format

For non-integer parameters, the board uses fixed point representation. The user space library provides a
function to convert to/from double to these fixed number representations. This is hidden from the library
user, since parameters are set through a series of exported functions. The fixed point is specified in the
form of

o Signed(intiger bits, fractions bits) or
¢ Unsigned(initiger bits, fractional bits)

for every parameter separately (see [4]).

What is not hidden from the library user are Pl error and FF and SP tables. All of them are stored in the
memory as 32 bit wide samples. One sample contains information about angle and magnitude and a
function is provided to either split a raw sample to angle and magnitude or to join the angle and
magnitude into a 32 bit wide raw sample.

3.2.2.2 Memory map

Custom logic requires a special memory map. This includes setting the addresses for storing PI Error,
SP and FF tables. User space library provides a function that sets this addresses based on the number of
pulse types and maximum size for each of the SP and FF tables and PI error. The maximum allowed
sizes are obtained from board registers.

Since the generic sis8300 library expects the ADC data to be stored at the beginning of the memory, this
function also makes sure that the memory reserved for the custom logic is reserved at the end. This
allows the reuse of generic functions for reading and memory setup for the ADC sampling.

This function should always be called when the board is powered on, or when a software reset is
executed, because this resets all custom (LLRF specific) settings.

3.2.2.3 Cavity Signal

For the cavity signal, a read-only value is provided by the controller, which specifies the number of
samples taken during active phase.

3.2.2.4 PI Error

Custom LLRF firmware provides an additional internal signal, which does not correspond to any of the
physical Al channels, but represents the Pl error. The difference in interface to this channel with respect
to generic ADC channels is that there is no nsamples setting for PI error. Value for nsamples is provided
as a read-only parameter after each pulse.

The library also provides a function to read the raw (in fixed point format, where PI error and magnitude
waveforms are interleaved, see 3.2.2.1) PI Error values from controller memory.

3.2.2.5 Control Tables

A part of board memory is reserved for storing control tables (SP and FF), one for every pulse type. The
interface to Control Tables is much the same as for a normal I/O channel, where pulse type corresponds

15(72)

Module Technical Documentation
Document Number
Date 20 April 2015

to channel number. The user-space library provides functions to write or read the raw table for the
current pulse type or set the number of samples in the control tables belonging to current pulse type.

When writing a table, the library only checks if pulse type is out of range. Other than this, it does not
perform any checks on data validity but simply copies a block specified by nsamples to board memory.
It is up to the method calling the function to make sure that the content of tables is correct (also see
3.2.2.1).

3.2.2.6 Signal Monitoring

The controller allows for setup of min and max limit for 8 channels (Also see APPENDIX: Current
Development System). ADC Channels 0 and 1 represent the cavity and reference input respectively, and
do not have signal monitoring functionality. Signal monitoring setup allows the selection of signal type
(either AC or DC) and a threshold value. User can than define on what conditions an alarm should be
raised and what should the action on alarm be.

NOTE: One of possible actions of signal monitoring is to trigger interlock action is set to trigger
interlock, than first harlink output will go high.

3.2.2.7 Trigger Setup

As already explained in 2.22.2, the LLRF doesn’t behave as a generic DAQ card but needs 4 specific
triggers to function (Table 4). Each of this triggers must be connected to a separate trigger line, which
is why firmware offers 3 different trigger setups. Each of the setups define which trigger line represents
what event, where the trigger line for PMS is common to all the setups.

3.2.2.8 Interlock

Controller provides 4 different types of interlock conditions on harlink inputs 0 — 3. In addition to generic
options to enable external trigger on rising or falling edge, a high and low level condition is also
implemented in the custom logic.

3.2.2.9 Special Operating Modes

The LLRF controller board can function in several operating modes [4]. Each of this modes must be set
up and can also be operated in CW mode. Both are provided for in the library, CW mode can be managed
with software triggers, and is explained in on the OPI (see http 1 user manual)

3.2.3 Generic sis8300 interface and its altered functionality in LLRF context

Some of the generic firmware functionality is altered when using the board with custom LLRF firmware.
This normally affects some of the functions provided in the generic sis8300 user space library. The
affected functions are listed in Table 5.

Generic Function LLRF context

Arm the device After each PULSE_DONE interrupt, the board has to be rearmed.

Disarm the device Has no effect when done through software.

16(72)

Module Technical Documentation

Document Number
Date

20 April 2015

Pretrigger

On generic Struck FW there is an option to set pretrigger — samples to acquire
before trigger. This functionality is no longer be available with LLRF custom
FW. This setting will be ignored.

ADC nsamples

On generic Struck FW there is an option to specify the number of samples that
have to be acquired during acquisition.

The LLRF FW is designed so that this setting only effects the amount of data
written to RAM that can be readout by the user. The whole LLRF FPGA
processing chain is ignorant of the setting, ADCs run constantly and the PI
controller always gets input. (If this was not the case, the correct setting of
NSAMPLES would be crucial, since Pl needs to obtain current state of the
LLRF system in order to work properly).

Enable acquisition
for ADC channel
(ADC channel mask)

All the ADC channels with connected signals have to be enabled while
controller is running (see also APPENDIX: Current Development System).
Disabling a channel would cause the controller to receive only zeroes for that
input and thus improper operation.

I IMPORTAINT: If The channel 0 that requires cavity input is not enabled,
the control loop will not start. This channel should always be enabled.

AO Channels

The output of the board running custom LLRF FW is set by the FPGA and is
used to drive the klystron. The applications should not use the write AO
functions from generic FW.

DAC Setup

The board uses DAC output to drive the Klystron. The generic
DAC_CONTROL_REGISTER should not be touched directly. This setup
should be done through the provided user-space library function.

ADC Setup

ADC tap delay needs to be configured when the board is started. This is done
through a provided user space library function.

DAQ Done interrupt

This interrupt is no longer in use and has been replaced by PULSE_DONE
interrupt. User should not depend on this interrupt.

UPDATE: although the interrupt can still be found in the Struck
documentation, it is no longer connected.

Trigger setup All the generic Trigger setup has no meaning with LLRF specific FW. The
controller offers a custom register with 2 available trigger setups.
Trigger settings in registers: LVDS_IO_CONTROL_REG and
SAMPLE_CONTROL_REG are ignored

Harlink Input Harlink inputs, controlled in HARLINK IN_OUT_CONTROL_REG are

used to setup the interlock condition.

17(72)

Module Technical Documentation
Document Number
Date 20 April 2015

Software Interrupt Custom logic offers two software interrupts, which are connected to the user
interrupt line provided by generic struck FW. The two interrupts are PMS and
PULSE_DONE. The reason for the interrupt can be read out from a custom
register (GOP, see [4]).

Table 5: Generic FW functions and their meaning in LLRF context

3.3 EPICS Device Support - NDS

EPICS device support module is responsible for integrating the card into EPICS and providing
communication between the user-space APl and EPICS database. It is realised with the help of NDS
Framework [5]. Since NDS framework is focused on DAQ cards, bare NDS functionality had to be
extended to support additional control options required by LLRF controller board.

3.3.1 Responsibilities

3.3.1.1 Pulse Type

The accelerator will have several possible pulse types/beam modes (not defined yet). Each of these pulse
types could be different (length of the pulse, power, etc.) which is why each of them will require a
separate SP and FF table. Distinction between different pulse types is one of the points where the SP
and FF tables separate themselves from other control tables in Table 3.

It will be the responsibility of NDS layer to make sure that the pulse type is set up (meaning that the SP
and FF table for the PT are loaded into memory), before allowing the user to select the PT.

3.3.1.2 Controller setup

The device support should provide access to all the settings that are needed by the controller, which can
roughly be separated into 8 groups:

Non 1Q sampling Setup
Vector Modulator setup
Modulator Ripple Filter setup
Pl Controller Setup

Control Table setup

Data Acquisition Setup
Signal Monitoring Setup
Interlock and Trigger Setup

O Nk~ wDdDE

It will also perform some basic sanity checks on validity of those parameters.

3.3.1.3 PI Error RMS calculation and statistics display

Option to track the cumulative average for Pl I and Pl Q error since last time a controller setting was
changed is also provided. Tracking also provides an option to ignore samples at the end of the pulse, or
reset the RMS calculation on request.

18(72)

Module Technical Documentation
Document Number
Date 20 April 2015

3.3.1.4 Control Tables (FF and SP table)

Since the user space library writes the given SP or FF table to board memory without question, it will
be in NDS responsibility to make sure that the data written is of correct size (as specified in
TABLE_SIZE register) and format. It is not, however, responsible for the content of the tables.

During PULSE_ACTIVE state, the controller will than play out the tables. If the table does not extend
through the whole interval between PULSE_COMMING and PULSE_START for SP table, or between
PULSE_START and PULSE_END for FF table, the controller will hold the last value in the table until
the interval is finished [4].

3.3.2 Implementation

Since the generic Struck firmware is already supported in NDS [5] with a set of C++ Classes [6], the
LLRF specific functionality is added by extending these Classes and adding new ones where necessary.
All the classes and their additions with respect to generic EPICS module are described in this section.

A Device in NDS is modelled with Device, Channel Group and Channel Classes. The Struck SIS8300L
LLRF Device has four channel groups with the following channels:

¢ Analog Input Channel Group (Al CG)
o 10 Analog Input Channels (Al CH)
e Control Table Channel Group — SP tables (CT CG)
o One Control Table Channel for each pulse type (CT CH)
o One Control Table Channel for Special Operating Modes (CT SO)
e Control Table Channel Group — FF tables (CT CG)
o One Control Table channel for each pulse type (CT CH)
o One Control Table Channel for Special Operating Modes (CT SO)
e Controller Channel Group Class (CTRL CG)
o 2Pl Channels (Pl CH)
= Pl Channel (P11 CH)
= PIQ Channel (PI Q CH)
IQ Channel (1Q CH)
VM Channel (VM CH)
1 Modulator Ripple Filter Channel (MR CH)
o 4 Interlock Channels (ILOCK CH), one for every HARLINK input
Signal Monitor Channel Group (SIGMON CG)
o 10 Channels, each corresponding to an Al channel (SIGMON CH)

o O O

The physical Al channels map directly to Al Input channels, all other channels are virtual. The Control
Table Channel group has two instances, one taking care of SP and the other of FF tables. Each Control
table channel number maps directly to pulse type. The Controller Channel Group joins together all the
parameters that are required to set up the custom part of the LLRF, except for Signal monitoring which
is moved to its own CG. 1Q, VM, MR and ILOCK CHs channels only hold parameter values, while both
Pl Channels act as data input channels that provide readout of the PI error for the previous pulse and
setup of PI controller parameters.

The Device class is responsible for following the controller status and is in control of all Channel Group

transitions. When the Device transitions to ON it starts waiting for PULSE_DONE interrupt and sends
all Channel Groups into PROCESSING state. When the interrupt is received, the Device sends all the

19(72)

Module Technical Documentation
Document Number
Date 20 April 2015

Channel Groups into DISABLED state. When a Channel Group or Channel within the group leaves the
processing state, it fetches data belonging to the pulse that just passed, and when it enters the disabled
state it writes the new values to the controller.

During PROCESSING state CGs and CHs are accepting new values for controller parameters. The
values are than taken into account with the next pulse, e.g. after the device is armed the next time. Each
parameter or setting has a corresponding readback value, which gets updated when the parameter is
actually written to the hardware. The readback thus provides information on the exact time the value
was written to the controller.

If the setting is written to a shadow register (see [4] for the shadow register list), the controller takes the
new value into account after an explicit call from software to update parameters. A call for update
parameters happens before every arm of the board (if the parameters changed) and has its own
corresponding readback which provides the exact time this was written to hardware. This allows one to
track what parameters were used for each specific pulse.

3.3.3 Driver Initialization Parameters

In addition to standard parameters required by the ndsCreateDevice iocsh function [5], the driver
requires two LLRF specific initialization parameters:

Parameter Meaning

FILE Specifies the Linux device node corresponding to the selected Struck
SIS8300L board.

NUM_PULSE_TYPES | Number of pulse types that the device has to support. Tells the driver how
many CT CHs to create in each CT CG.

Table 6: Driver initialization parameters

3.3.4 Exported interface

The interface exported by the NDS layer is a set of asynReasons, belonging to a Channel or a Channel
Group. This chapter gives an overview of C++ Classes that are included in the EPICS module.

3.3.4.1 LLRF Device (sis8300lIrfDevice Class)

The sis8300lIrfDevice Class derives from sis8300Device Class [6] to provide LLRF specific
functionality. The Class is responsible for card registration and CG management. It is also in control of
the software state machine by implementing the NDS Device states defined in Table 8 and transitions
between them (Table 9).

The lifecycle of the device starts with its creation at 10C initialization. After 10C initialization, the
device is in OFF state and the card not yet registered with the user-space library. The Device
automatically transitions to INIT state if its Enabled property is set, or waits for INIT message from the
user. The condition for successful transition is that the NUM_PULSE_TYPES > 0, that the selected card
(the device node via the FILE initialization parameter) is successfully opened and that the information
about the device serial number and firmware version is read from the card successfully. Upon a

20(72)

Module Technical Documentation
Document Number
Date 20 April 2015

successful transition all the CGs are passed the device context (they in turn pass it on to their CHs) so
that they are able to interact with the card. If the card registration fails, the Device goes into ERROR
state.

When the Device enters INIT state, it first initializes the card. This includes:

e Setup the memory map
e Setup DAC
e Setup the clock source

It than calls initialize on all CGs (they in turn call initialize on all CHs), so that initial configuration can
be read from device registers, and starts waiting for ON request from the user. At this point the user can
configure the controller by specifying DAQ options, pulse type, various Pl controller parameters, SP
and FF tables.

When the device receives an ON request, it first checks if the selected pulse type has been setup correctly
(SP and FF tables are set). If transition is successful the Device requests that all CGs write their data to
the controller, sends an INIT DONE flag to the board and arms the controller. After this it sends CGs to
PROCESSING state (They in turn send their CHs to PROCESSING state) and starts the pulse setup task
which waits for PULSE_DONE or PMS interrupt from the board.

The pulse setup task is responsible for monitoring the controller state and controlling when CGs will
go to PROCESSING or DISABLED. Unless an error occurs, or it is interrupted by the user the task will
keep on repeating the following:

1. Wait for a software interrupt from the board
2. Receive interrupt,
a. If itwas PMS go to ERROR state and stop the task
b. Ifiit was PULSE_DONE go to 3
3. Send all CGs to Disabled state
a. When they leave PROCESSING, they will read the past pulse data from the controller
b. When they enter DISABLED state they will write new user settings to the controller
and do callbacks for any settings that have changed — callbacks will update the setting
reaback values. The readback values will thus always reflect the current hardware
settings
4. Check with CGs if any of the parameters have changed and determine the update reason for the
board
5. Check if new pulse type was selected, if yes, check if the selected type is set up. If yes, write
the new pulse id to the card
Send all CGs to PROCESSING state
Clear latched interrupts for Pl overflow and VM magnitude limiter
Arm the board
Goto1l

©o~No

Information that is included in the past pulse data are values that are expected to change on pulse-to-
pulse basis. They are listed in Table 7.

Data NDS Class

21(72)

Module Technical Documentation
Document Number

Date 20 April 2015
P1 Error waveforms (2x) PI CH
Calculated P1 Error RMS (2x) PI CH
Pl Overflow Status (2x) PI CH
ADC waveform data (10x) Al CH
Number of samples acquired for PI err during ramp-up and active phase CTRL CG

Total number of samples acquired during ramp-up plus active phase for cavity | CTRL CG
signal

Total number of samples acquired during ramp-up plus active phase for PI error CTRL CG

Vector Modulator magnitude limiter status VM CH
ILOCK Status (4x) ILOCK CH
Signal Monitor ILOCK, PMS and ALARM status (8x) SIGMON CH

Maximum or minimum amplitude on a specific channel and current amplitude on | SIGMON CH
that same channel

Table 7: Parameters that change on pulse to pulse basis and are read out after every PULSE_DONE interrupt from
the device.

The sis8300IIrf Device Class implements the following NDS Device states:

State Description

OFF The device file is not opened, and the controller cannot be accessed. In this
state, the board can be replaced, hot-plugged or flashed with new firmware.

INIT The device file is opened. All the groups have device context. The controller
is IDLE. In this state it is possible to change clock settings.

ON The controller is active and the control loop is running. Pulse setup task is
running.
RESET This is a transition state where a SW reset of custom logic is executed. After

the reset the device can be put into INIT or OFF state.

22(72)

Module Technical Documentation

Document Number

Date 20 April 2015

ERROR

A PMS interrupt was received, or there was a problem in communication with

the device.

Table 8: Device NDS states

And transitions between them:

Source State

Destination State

Description

OFF

INIT

Try to open the device and read firmware version and
serial number. Pass the device context to all the CGs
and CHs and initialize the CGs and CHes.

OFF

ERROR

This transition occurs if the device cannot be opened
or if the device is in PMS state when it is turned on.

INIT

ON

Check if the selected pulse type has FF and SP tables
set. If yes, indicate INIT DONE to the device and
arm it. Start the pulse setup task, that will wait for
PMS or PULSE_DONE interrupt (see Table 4).

This mode is also used for device setup.

ON

ERROR

The transition occurs when a PMS interrupt is
received or if there is a problem in communication
with the device. Stop waiting for PULSE_DONE and
PMS interrupt.

Any except OFF

RESET

Issue a software reset of custom logic. Send all the
LLRF Channel groups to RESET.

RESET

INIT

The device waits in RESET state (for clarity) and has
to be manually moved out of it.

Any state except ON

OFF

When device transitions to OFF state file descriptor
is released.

Table 9: Device state transitions

The Device Class implements the following parameters:

Asyn Reason

Asyn Interface

Description

23(72)

Module Technical Documentation
Document Number

Date 20 April 2015
State asynint32 See [5]
Command asynOctetWrite Supported messages are “ON”, “RESET”, “OFF”
and “INIT”
Enabled asynint32 See [5]
Model asynOctetRead See [5]
Serial asynOctetRead See [5]
HardwareRevision asynOctetRead See [5]
FirmwareRevision asynOctetRead See [5]
SoftwareRevision asynOctetRead See [5]
OperatingMode asynint32 Used to select the operating mode of the controller.
ForceTrigger asynint32 To be used for special operating modes and during
setup to force a specific FSM state or manual
parameter update.
PulseType asynint32 Current Pulse Type. Max allowed value is defined at
ioclnit.
PulseDoneCount asynint32 Number of received pulse since the last INIT to ON
transition
PulseMissed asynint32 Binary. Goes high if pulse count since last received
user interrupt is bigger than one.
PMSAct asynint32 State of the PMS. Goes high if PMS interrupt was
received from the board.
UpdateReason asynint32 Called whenever a request to the board is made to:
e [nit done = 0x1,
e Take into account new parameters = 0x2
e New pulse type/update all = 0x4,
e Take into account new FF table for the
current pulse type 0x8
e Take into account new SP table for the
current pulse type 0x10

24(72)

Module Technical Documentation
Document Number

Date 20 April 2015
e Do a software reset

Arm asynint32 Binary. Indicates when the device was armed from
software.

PulseDone asynint32 Binary. Indicates when a PULSE_DONE interrupt
was received from the device.

Status asynint32 Used mostly for tracking the controller state during
development, has states ARMED, PULSE_DONE,
CLEAR, PMS

SetupActive asynint32 Binary. Used to put the controller into setup mode.

SignalActive asynint32 Binary. Used to determine whether the controller is
currently in active state (outputting a signal). Used in
CW mode only.

Table 10: Device NDS properties

3.3.4.2 LLRF Base Channel Group (sis8300lIrfChannelGroup Class)

This Channel Group Class is a base Class for all LLRF specific channel groups. It implements or
overrides the functionality of an NDS Channel Group Class. The class registers state transition handlers
that correspond to LLRF controller states and provides functions for tracking parameter changes. The
Channel Group is responsible for reporting if any changes were made on any of its channels. Tracking
parameter changes is important to determine the update reason from the pulse setup task. The Class
provides 4 virtual functions (see also [6]) that should be overridden by deriving classes:

e commitParameters: write new parameter values associated with this CG to the controller.

o readParameters: read all the current parameter values from hardware

o markAllParametersChanged: Mark all the parameters this CG is responsible as changed. Call
markAllParametersChanged on all channels. This will force a rewrite of all the parameters when
a next call to commitParameters occurs.

o initialize: Used for any initialization that requires access to the hardware and can thus not be
done in IOC INIT phase. The default will also call initialize on all CHs. Default will call
markAllParametersChanged and commitParameters.

The following state handlers are registered within the group:

State Handler Description
ENTER Set updateReason to 0
PROCESSING

25(72)

Module Technical Documentation
Document Number
Date 20 April 2015

ENTER DISABLED | The following actions are performed in the order they are listed:

=

Check if CG is in IOC_INITIALIZATION state and return if it is.

2. Check if CG came from RESETTING state, send all CHs to
DISABLED.

3. Call commitParameters.

ENTER RESET There are two state handles taking care of this transition. The following

actions are performed in the order they are listed:

1. Send all channels to RESETTING STATE.

2. Call readParameters to get the new values from hardware (after reset
was executed).

3. Call markAllParametersChanged to force a rewrite of the values to
hardware when returning to INIT state.

Table 11: LLRF Channel Group State handlers

The LLRF Channel Group Class implements the following configuration parameters, specified by NDS:

Asyn Reason Asyn Interface Description

State asynint32 See [5]

Enable asynint32 Overridden. CG cannot be disabled.

Command asynOctetWrite, “START” and “STOP” messages will return an
error, because state transitions are controlled by the

asynOctetRead Device Class, based on software interrupts, not the

user.

ChannelDataReady | asyniInt32 Signals when all data in channel have been updated.

Table 12: LLRF Channel Group NDS properties

3.3.4.3 LLRF Base Channel (sis8300lIrfChannel Class)

This is a LLRF specific NDS ADIOChannel Class [5], from which all LLRF specific channels are
derived. It provides commonly used functions and registers state handlers, relevant in LLRF operation.
The core functions of this class are much the same as for LLRF CG Class and should be overridden by
deriving Classes where necessary:

e commitParameters: If the CG is not in PROCESSING, than write new values for all the
parameters that have changed to hardware and update the CG’s updateReason accordingly.
Derived classes should override this function when necessary to write the parameter values
corresponding to the specific channel

26(72)

Module Technical Documentation
Document Number
Date 20 April 2015

o readParameters: Read current parameter values from hardware

o markAllParametersChanged: Mark all parameters in the CH as changed. This will cause them
to be recommitted to hardware.

¢ initialize: The function is intended for any type of initialization that requires access to hardware
and can thus not be done before device enters the INIT state. Default function just calls
markAllParametersChanged and commitParameters.

Table 13 gives a detailed description of state transitions, which are all hooked on the PULSE_DONE
interrupt:

State handler Description

ENTER DISABLED | Call commitParameters unless the CH is in IOC_INITIALIZATION state.

ENTER RESET Call readParameters and markAllParametersChanged.

Table 13: LLRF Channel State handlers

The LLRF Channel Class implements the following configuration parameters specified by NDS:

Asyn Reason Asyn Interface Description
State asynint32 See [5]
Enabled asynint32 This property is read only. All channels used for

LLRF specific data and settings are always enabled

Command asynOctetWrite, “START” and “STOP” messages are overridden in
this class, because state transitions are controlled by
asynOctetRead the Device Class and based on software interrupts,

not the user.

Table 14: LLRF Channel NDS properties

3.3.4.4 LLRF Control Table Channel Group (sis8300lIrfControlTableChannelGroup Class)

The LLRF Control Table Channel Group Class derives from LLRF Base Channel Group
(sis8300lIrfChannelGroup Class. A channel in this groups acts as a normal 1/0O channel. The channels
are grouped into Control Table Channel Group Class based on the table type, which can be FF or SP.
When the Control Table Channel Group initializes, it gets the maximum number of samples supported
by the FW from device registers. At the time of CG creation, each group registers as many CHs as there
are defined pulse types (specified by NUM_PULSE_TYPES parameter, Table 6).

In addition to inheriting NDS properties from Table 12, the class also implements the following
additional properties:

27(72)

Module Technical Documentation
Document Number
Date 20 April 2015

Asyn Reason Asyn Interface Description

SamplesCount asynint32 Read only. Gives maximum allowed number of
elements in a control table. VValue is read from device
registers when the device is turned on and is
currently (consult [4] for up to date values)

0x01000 for SP tables

0x10000 for FF tables

MaxNelm asyInt32 Maximum allowed elements in the FF or SP table.
The value is obtained directly from hardware at
transition to INIT state and does not change during
operation.

FFTableSpeed asynint32 Feed forward table speed represents the number of
clock cycles before next FF value is added to the PI
input.

In the interval [1,15] or every time a new Pl sample
is available

The setting is only available for FF tables, using it
for SP tables will return an error.

Table 15: Control Table Channel Group NDS properties

3.3.4.5 LLRF Control Table Channel (sis8300lIrfControlTableChannel Class)

The Control Table Channel Class derives from LLRF Base Channel (sis8300lIrfChannel Class). Each
instance of Control Table Channel represents a pulse type corresponding to that channel number. The
control table channel has two associated tables, I and Q.

Before the table is sent to hardware memory, both | and Q table are joined into a single table which is
what actually gets written to the hardware. If | and Q table are not of the same size, the shorter table is
filled up by the value of last element to get the same length for both tables. This is a viable solution,
since the controller holds the last value until the end of pulse phase anyway [4].

The number of elements in the array is not directly settable. It gets set when the tables are joined and is
the same as the number of elements in the larger table. The value of SamplesCount is used by the CG,
to determine the size of the currently used Control Table and send it to the controller.

In addition to inheriting NDS properties from Table 14, the Class also defines the following new ones:

Asyn Reason Asyn Interface Description

28(72)

Module Technical Documentation
Document Number

Date 20 April 2015

SamplesCount asynint32 Read-only. Number of samples equals number of
elements in the larger of AngleTable and
MagnitudeTable.

ITable asynFloat32Array | part of the Control Table,

QTable asynFloat32Array Q part of the Control Table

RawTable asynInt32Array Raw table that contains 32 bit samples, containing
both | and Q part. Basically the |1 and Q tables
converted to a Signed(1,15) fixed point
representation and interleaved, where table I is at
offset 0.

FFTableMode asynint32 FF Table mode, can be hold last or circular. Circular
is to be used with special operating modes (see [4]).
The reason can only be used with FF table types.

WriteTable asynint32 Trigger reason to write specified tables to hardware.

Table 16: Control Table Channel NDS properties

3.3.4.6 LLRF Special Operation Control Table Channel
(sis8300lIrfControlTableChannelSpecOp Class)

This Class derives from LLRF Control Table Channel (sis8300llrfControlTableChannel Class) and
provides settings for special operation modes (see [4]). It (ab)uses the | and Q table buffers from parent
to be used as Magnitude and Angle tables in case of Magnitude or angle Controlled Signal Generator.
In SP and FF CG, there is always one extra channel reserved at the end, which is used for special
operating modes. In addition to properties defined in Table 16, the class defines the following ones:

Asyn Reason Asyn Interface Description

SamplesCount asynint32 Read-only. Number of samples equals number of
elements in the larger of AngleTable and
MagnitudeTable.

MagTable asynFloat32Array Magnitude part of the Control Table

AngleTable asynFloat32Array Angle part of the Control Table

Table 17: Control Table Special Operation Class NDS Properties

When using the controller in special operating modes, the mode can require either Magnitude and Angle
or | and Q table. In the channel class itself (and also on the device) there are only two buffers, which

29(72)

Module Technical Documentation
Document Number
Date 20 April 2015

can contain either MA or IQ pair. The only difference between using the MagTable and AngleTable
reasons from Table 17 and using the ITable and QTable reasons from Table 16 is the conversion of the
double values to the hardware fixed point representation. Every time a new mode is used, both tables
should be written down to avoid mixing up the two representations.

3.3.4.7 LLRF Controller Channel Group (sis8300lIrfControllerChannelGroup Class)

The Controller Channel Group Class derives from LLRF Base Channel Group
(sis8300lIrfChannelGroup Class. It groups together all the channels that are responsible for monitoring
and setup of the controller state.

In addition to inheriting NDS properties from Table 12, it also defines the following new ones:

Asyn Reason Asyn Interface Description

SamplesCntPIRampUp | asyniInt32 Read-only. Number of Pl errors sampled during
ramp up phase (between PULSE-COMING and
PULSE_START triggers)

SamplesCntPIActive asynint32 Read-only. Number of PI errors acquired during
active phase (between PULSE_START and
PULSE_END triggers)

SamplesCntPITotal asynint32 Read-only. Number of PI errors acquired during
ramp up plus active phase (between
PULSE_COMMING and PULSE_END trigger).

SamplesCntADCTotal | asynint32 Read-only. Number of ADC samples acquired per
Al channel during ramp up and active phase
(between PULSE_COMMING and PULSE_END

OutputType asynint32 This is used to select either Pl or FF driven output.

TriggerType asynint32 Selects which three backplane trigger lines to use
for triggering,

e MLVDSIines0,1,2=0
e MLVDSlines4,56=1

Table 18: Controller Channel Group NDS properties

3.3.4.8 LLRF Non-IQ Sampling Channel (sis8300IIrfiQSamplingChannel Class)

The sis8300IIrflIQSamplingChannel Class extends the basic sis8300lIrfChannel Class and defines the
following asynReasons that represent 1Q sampling settings:

30(72)

Module Technical Documentation
Document Number

Date 20 April 2015

Asyn Reason Asyn Interface Description

IQCavinpDelay asynint32 Cavity input delay. If enabled, sets number of
clock cycles to delay cavity input as: Delay =
value + 3, i.e. minimum delay is 3 CC. Used to
align Cavity and Reference input at phase
compensation. Limits are:
[0,63]

IQCavinpDelayEn asynint32 Binary, used to enable or disable the Cavity
input delay.
Enable: 1, Disable: 0

IQANgleOffset asynFloat64 IQ sampling angle offset. Used to compensate
for different physical delays between cavity and
reference signal. Used to adjust cavity input
signal so that it is in phase with reference when
a SP with 0 angle is used. Limits are:
['TC, TE]

IQANgleOffsetEn asynint32 Enable or disable the IQ angle Offset addition.
Enable: 1, Disable: 0

NearlgParamM asynint32 Near 1Q parameter M

NearlgParamN asynint32 Near 1Q parameter N

Table 19: 1Q Channel NDS properties

3.3.4.9 LLRF Vector Modulator Channel (sis8300IIrfVMChannel Class)

The sis83001IrflVMChannel Class extends the basic sis83001IrfChannel Class and defines the following
asynReasons that represent VVector Modulato Settings:

Asyn Reason Asyn Interface Description

MagnitudeLimitVal asynFloat64 Set Magnitude limit value. Limits are:

[-215, 215-2-6] — [0.0, 0.999984741211]

MagnitudeLimitEnable | asynint32 Enable magnitude limiter. Limit value is
MagnitudeLimitVal

31(72)

Module Technical Documentation
Document Number

Date 20 April 2015

Enable = 1, Disable =0

MagnitudeLimitStatus | asyniInt32 VM Magnitude limiter status, Read-Only
1 = Active, 0 = Not active

InvertOutputl asynint32 Invert | ouptut to compensate for Struck DAC
inversion.
Enable = 1, Disable =0

InvertOutputQ asynint32 Invert Q output to compensate for Struc DAC
inversion.
Enable = 1, Disable = 0

SwaplgEn asynint32 Swap | and Q =1, Do nothing =0

PreDistEn asynint32 Pre-distort input to VM.
Enable = 1, disable =0

PreDistRC00 asynFloat64 Pre-distortion matrix, value RC00. Limits are:

[-2%, 2! — 217] — [-2.0, 1.99975585938]

PreDistRC01

asynFloat64

Pre-distortion matrix, value RCO1. Limits are:

[-21, 2 — 212] = [-2.0, 1.99975585938]

PreDistRC10

asynFloat64

Pre-distortion matrix, value RC10. Limits are:

[-2%, 21— 217] — [-2.0, 1.99975585938]

PreDistRC11

asynFloat64

Pre-distortion matrix, value RC11. Limits are:

[-21, 2 — 2712] = [-2.0, 1.99975585938]

PreDistDCOI

asynFloat64

Pre-distortion DC offset for | part. Limits are

[-29, 20 — 2:15] — [-1.0, 1.99975585938]

PreDistDCOQ

asynFloat64

Pre-distortion DC offset for Q part. Limits are

[-29, 20— 2715] — [-1.0, 1.99975585938]

Table 20: VM Channel NDS properties

32(72)

Module Technical Documentation
Document Number
Date 20 April 2015

In addition to state transitions listed Table 13, this class defines the following state transitions:

State handler Description
LEAVE Read the Magnitude limit status
PROCESSING

Table 21: VM Channel State Transition Handlers

3.3.4.10 LLRF Interlock Channel (sis8300IIrfILOCKChannel Class)

The sis83001fIILOCKChannel Class extends the basic sis8300IIrfChannel Class and defines the
following asynReasons that represent Interlock Channel Settings:

Asyn Reason Asyn Interface Description

getValuelnt32 asynint32 Harlink input status

High=1,Low=0

ILOCKCond asynint32 Set Interlock Condition:

DISABLED =0,
RISING EDGE =1,
FALLING EDGE = 2,
HIGH LEVEL =3,
LOW LEVEL =4

Table 22: ILOCK Channel NDS Properties

In addition to state transitions listed Table 13, this class defines the following state transitions:

State handler Description
LEAVE Read the Harlink input Status
PROCESSING

Table 23: ILOCK Channel State Transitions

3.3.4.11 LLRF PI Channel (sis8300lIrfPIChannel Class)

The LLRF PI channel Class derives from LLRF Base Channel (sis8300lIrfChannel Class. In addition to
inheriting NDS properties from Table 14, it also defines additional properties that represent settings or
data for the I and Q PI controller.

33(72)

Module Technical Documentation
Document Number
Date 20 April 2015

Apart from reading and writing to hardware, this class also calculates RMS of the Pl error waveform
obtained after every pulse and does a cumulative average of the value. The average is calculated from
last X pulses and gets reset whenever controller settings change. A maximum value of the RMS during
these X pulses is also stored.

Asyn Reason Asyn Interface Description

PIGainK asynFloat64 Set K gain for PI controller. Limits are:

[-28, 28-224] — [-128.0, 127.9999999404]

P1GainTsDivTi asynFloat64 Set Ts/Ti gain for PI controller. Limits are:

[-28, 28-22] — [-128.0, 127.9999999404]

PlSaturationMax asynFloat64 Set Max Saturation for Pl Controller. Limits are:

[-215, 215-216] — [-32768.0, 32767.999984741211]

PlSaturationMin asynFloat64 Set Min Saturation for PI Controller. Limits are:

[-215, 215-21%] — [-32768.0, 32767.999984741211]

PIFixedFFVal asynFloat64 Set fixed point FF value. Limits are:

[-1, 1-25] — [-1.0, 0.999969482422]

PIFixedFFEnable asynint32 Use PIFixedFFVAI instead of FF table

Use fixed = 1, Use table =0

PIFixedSPVal asynFloat64 Set fixed point SP value. Limits are:

[-1, 1-2%5] — [-1.0, 0.999969482422]

PIFixedSPEnable asynint32 Use PIFixedSPVal instead of SP table

Use fixed =1, Use table =0

P1OverflowStatus asynint32 Overflow occurred = 1, No Overflow =0
BufferFloat32 asynFloat32Arrayln | Contains the PI error waveform from the last pulse.
RMSCurrent RMS value of the PI error during ACTIVE phase

(between PULSE_START and PULSE_END timing
triggers, see Table 4), calculated from the data

34(72)

Module Technical Documentation
Document Number
Date 20 April 2015

available through BufferFloat32

RMSSMNMlIgnore | asynint32 Number of samples to ignore at the end of every
pulse when calculating the RMS

RMSAverage asynFlot64 Cumulative average of RMS values for the last X
pulses, where X can be obtained from RMSPulseCnt.
The average is reset manually, or when any of the
parameters on the device change (_UpdateReason !=
0, see 3.3.4.1).

RMSMax asynFloat64 Maximum RMS value in the last X pulses, where X
can be obtained from RMSPulseCnt. The average is
reset manually, or when any of the parameters on the
device change (_UpdateReason !'= 0, see 3.3.4.1).

RMSPulseCnt asynint32 Number of pulses taken into account in the RMS
average calculation.

RMSReset asynint32 Binary, used to manually reset the RMSAverage and
RMSMax values and start fresh with the next pulse.
RMSPulseCount will start again from 1.

Table 24: PI Channel NDS properties

In addition to state transitions listed Table 13, this class defines the following state transitions:

State handler Description

LEAVE
PROCESSING

Read the PI Error waveform from the hardware

Calculate the RMS during the active phase

Calculate the new RMS cumulative average

Check if the new RMS is bigger than current RMS max value and
storeitifitis

e Check the PI overflow status

Table 25: Pl Channel State Transitions

3.3.4.12 LLRF Modulator Ripple Filter Channel (sis8300IlIrfModRippleFiltChannel Class)

The LLRF Modulator Ripple Filter Channel Class derives from LLRF Base Channel
(sis8300lIrfChannel Class. In addition to inheriting NDS properties from Table 14, it also defines
additional properties that are specific to Modulator ripple filter settings:

Asyn Reason Asyn Interface Description

35(72)

Module Technical Documentation
Document Number
Date 20 April 2015

ModRippleFilConstS asynFloat64 Modulator ripple filter constant S:

[-29, 20 - 23] — [-1.0, 0.999969482422]

ModRippleFilConstC | asynFloat64 Modulator ripple filter constant C:

[-2°, 20 - 2] — [-1.0, 0.999969482422]

ModRippleFilConstA | asynFloat64 Modulator ripple filter constant A:

[0, 2° - 216] — [-1.0, 0.999984741211]

ModRippleFilStartEvnt | asynint32 Modulator ripple filter start event defines the start
of modulator ripple filter active period. Values can
be:

e PULSE_COMMING =0,
e PULSE_START =1

ModRippleFilStopEvnt | asynint32 Modulator ripple filter stop event defines the end
of modulator ripple filer active period. Values can
be:

e PULSE START=1,
e PULSE_END =2

ModRippleFilQEn asynint32 Binary, enable modulator ripple filter for Q part.
Values can be:

Enable = 1, Disable =0

ModRippleFillEn asynint32 Binary, enable modulator ripple filter for | part.
Values can be:

Enable = 1, Disable =0

Table 26: Modulator Ripple Filter Channel NDS Properties

3.3.4.13 LLRF Notch Filter Channel (sis8300lIrfModRippleFiltChannel Class)

The LLRF Notch Filter Channel Class derives from LLRF Base Channel (sis8300lIrfChannel Class. In
addition to inheriting NDS properties from Table 14, it also defines additional properties that are specific
to Notch filter settings:

36(72)

Module Technical Documentation
Document Number

Date 20 April 2015
Asyn Reason Asyn Interface Description
NotchFilConstAReal asynFloat64 Notch filter constant A real part:
[-2°, 20 - 23] — [-1.0, 0.999969482422]
NotchFilConstAlmag | asynFloat64 Notch filter constant A imaginary part:
[-2°, 2° - 23] — [-1.0, 0.999969482422]
NotchFilConstBReal asynFloat64 Notch filter constant B real part:
[-2°, 20 - 23] — [-1.0, 0.999969482422]
NotchFilConstBlmag asynFloat64 Notch filter constant A imaginary part:
[-2°, 20 - 23] — [-1.0, 0.999969482422]
NotchFilEn asynint32 Binary, enable notch filter. Values can be:
Enable = 1, Disable =0

Table 27: Modulator Ripple Filter Channel NDS Properties

3.3.4.14 LLRF Signal Monitor Channel (sis8300lIrfSignalMonitorChannel Class)

The LLRF Signal Moniotor Channel Class derives from LLRF Base Channel (sis8300lIrfChannel Class.
In addition to inheriting NDS properties from Table 14, it also defines additional properties that are
specific to Signal Monitor settings:

Asyn Reason Asyn Interface Description

MagTreshold asynFloat64 Magnitude threshold determines when an alarm is
raised on this channel. It is used together with
MonitorAlarmCnd. Limits are:

[0, 2° - 2:15] — [0.0, 0.999984741211]

MonitorAlarmCnd asynint32 Alarm condition. Alarm is raised when the ADC
signal goes:

Over Treshold=0, Below Treshold=1

Where the threshold is pecified with MagTreshold.

MonitorStartEvnt asynint32 This event defines the start of monitor active

37(72)

Module Technical Documentation

Document Number

Date 20 April 2015

period, it can be:

PULSE_COMMING=0,
PULSE_START=1,
PULSE_END=2,
NEVER=3

And has to be before MonitorStopEvnt, which
defines the end of monitor active period.

MonitorStopEvnt asynint32 This event defines the end of signal monitor active
period, it can be:
e PULSE_START=1,
e PULSE_END=2,
e PULSE DONE=3
And has to be after MonitorStartEvnt which
defines the start of monitor active period.
MonitorPMSEn asynint32 Trigger PMS if Alarm is raised
Disabled=0, Enabled=1
MonitorILOCKEn aynint32 Trigger ILOCK if Alarm is raised
Disabled=0, Enabled=1
(see also APPENDIX: Current Development
System)
SygnalTypeDC asynint32 Set signal type, it can be:
AC=0, DC=1
MagCurrent asynFloat64 Current magnitude value on the corresponding
ADC channel
MagMinMax asynFloat64 Minimum or maximum magnitude value during
the last monitor active period (defined with
MonitorStartEvnt and MonitorStopEvnt). If
MonitorAlarmCnd is set to trigger below
threshold, this will return the mainimum
magnitude, if it is set to trigger above threshold, it
will return the maximum magnitude.
SigmonAlarm asynint32 Binary, shows the status of alarm on this signal

monitor CH. Values are:

38(72)

Module Technical Documentation
Document Number

Date 20 April 2015

Alarm active = 1, Not active =0
The alarm will be raised if the signal goes below or
over magnitude threshold (depending on the choice
of MonitorAlarmCnd) during the signal monitor
active period (defined with MonitorStartEvnt and
MonitorStopEvnt).

SigmonPMS asynint32 Binary, shows the status of PMS for this signal
monitor CH. Values are:
1 = PMS active, 0 = not active
The PMS is raised if alarm is raised and if PMS
triggering is enabled for the CH (with
MonitorPMSEn).

SigmonlLOCK asynint32 Binary, shows the status of interlock on this signal
monitor CH. Values are:
Interlock active = 1, not active = 0
Interlock becomes active when alarm is raised and
if interlock is enabled for the CH (with
MonitorILOCKER).

Table 28: NDS Signal Monitor Channel Properties

In addition to state transitions listed Table 13, this class defines the following state transitions:

State handler Description

LEAVE e Read alarm status for the channel

PROCESSING e Read PMS status for the channel
¢ Read interlock status for the channel
¢ Read maximum/minimum amplitude for the last pulse
¢ Read current magnitude value

Table 29: Singal Monitor Channel State Transitions

3.3.4.15 LLRF Analog Input Channel Group (sis8300IIrfAIChannelGroup Class)

The Analog Input Channel Group Class derives from generic sis8300 Al CG Class [6]. It overrides
asynReasons that are not supported in the LLRF specific implementation. In this derived Class, the
responsibility of the Al CG for triggering the acquisition is removed, since this is in the domain of the
Device Class. It does not add any new state transitions and overrides two from the parent class (see [6]),
their actions are defined in Table 30:

39(72)

Module Technical Documentation
Document Number

Date 20 April 2015
State handler Description
ENTER Override parent to do nothing
PROCESSING
LEAVE Override parent to do nothing
PROCESSING
ENTER DISABLED | Keep parent’s handler, that calls commitParameters

Table 30: NDS LLRF Al CG state transitions

This Class implements the following parameters:

Asyn Reason Asyn Interface Description

State asynint32 See [5]

SamplesCount asynint32 Number of samples to acquire. This only affects the
number of ADC samples that will get stored into
memory.

ClockSource asynint32 Overrides parent to prevent the changing the clock
settings when the loop is running (Device is in ON
state).

ClockFrequency asynint32 Overrides parent to prevent the changing the clock
settings when the loop is running (Device is in ON
state).

ClockDivider asynint32 Overrides parent to prevent the changing the clock
settings when the loop is running (Device is in ON
state).

Table 31: Al Channel Group NDS properties. Clock setting are meant to be used during development and cannot
be changed while the controller is running = while device is in ON state.

Parameters not listed in Table 31 are unsupported or overridden. They are:

Asyn Reason Asyn Interface Reason for override

Command asynOctetWrite “START” and “STOP” messages are overridden in
this class, because state transitions are controlled by
the Device Class, based on software interrupts, not

40(72)

Module Technical Documentation

Document Number

Date 20 April 2015
the user.

TriggerRepeat asynint32 Is used by the parent class for automatic rearm. In
LLRF implementation, Device Class is responsible
for arming the board.

TriggerDelay Not supported

TriggerCondition asynint32 Not Supported in the same way. Generic Struck
Trigger setup has no meaning.

Enable asynint32 CG cannot be disabled

Table 32: Al Channel Group overridden NDS properties

3.3.4.16 LLRF Analog Input Channel (sis8300IIrfAIChannel Class)

The Analog Input Channel Class derives from generic sis8300 Al CH Class [6] for usage with channels
AIO (Cavity input) and All (Reference input). It overrides asynReasons not supported by the LLRF
specific implementation. It does not add any new state transitions and overrides two from the parent
class (see [6]), their actions are defined in Table 30:

State handler Description

ENTER Keep parent

PROCESSING

LEAVE Extend parent to add signal magnitude and angle read
PROCESSING

ENTER DISABLED

Keep parent’s handler, that calls commitParameters

This Class implements the following parameters:

Asyn Reason Asyn Interface Description

State asynint32 See [5]

Enable asynFloat64 Overridden, so that disabling of AIOQ (cavity input)
and Al1 (reference input) is not allowed.

SignalAngle asynFloat64 Current signal Angle, should always be read together

with SignalMagnitude after a new MA point is

41(72)

Module Technical Documentation
Document Number
Date 20 April 2015

available (see NewMAPaint)

SignalMagnitude asynFloat64 Current Signal Magnitude, should always be read
together with Angle after a new MA point is
available (see NewMAPoint)

Signall asynFloat64 Current Signal I value. Is calculated together with Q
value when a new MA point is received from the
device. It should always be read together with Q
when a new MA point is available (see
NewMAPoint)

SignalQ asynFloat64 Current Signal Q value. Is calculated together with Q
value when a new MA point is received from the
device. It should always be read together with I when
a new MA point is available (see NewMAPoint)

NewMAPoint asynint32 Writing to this will force read of a MA point from
the device. The record will get processed when a new
MA and corresponding IQ point is available.

When using the MA and 1Q values, one should only
tread out the pairs when this is processed, because
the data is correlated.

Table 33: Al Channel NDS properties

3.4 EPICS Database

EPICS database will be responsible for communication with the user. Records will be provided for
configuration of all the LLRF board functional blocks and HW status update.

3.4.1 Exported interface

The interface exported by this block is a set of EPICS process variables that can be accessed through
the CA. The templates are separated into several groups and have the following prefixes:

o sis8300IIrf-Main prefix includes all the templates required for normal operation of the device,

o sis8300IIrf-RMSStatistics includes extra records for resetting RMS statistics from the database,

o sis8300IIrf-Register includes a list of LLRF-specific registers and allows one to read/write raw
values from/to them,

o sis8300IIrf-Setup includes records required for the setup procedure,

o sis3800IIrf-SpecOp includes all the records needed to use the device in special operating modes

3.4.1.1 sis8300lIrf-Main-Device.template

This template adds functionality to the generic sis8300Device.template [6]. In order to successfully load
the template, the generic one must be loaded first. The added functionality is the following:

42(72)

Module Technical Documentation
Document Number

Date 20 April 2015
Name Type Description
$(PREFIX) mbbi Adds RESETTING to the list of
generic sis8300Device states
$(PREFIX):PT longout, | Pulse Type.
$(PREFIX):PT-RBV longin
$(PREFIX):PMS bi PMS status, 1 if active, 0 if not
$(PREFIX):ARM bi Used to track when the device was
armed from software.
$(PREFIX):PULSE_DONE bi Used to track when PULSE_DONE
interrupts are received from the
device.
$(PREFIX):UPDATE_REASON bi Tracks calls to update parameters, that
can:
e Make shadow registers visible
to the controller
e Force the controller to load
new SP/FF tables
e Inform the controller of a new
pulse type
e Initdone
$(PREFIX):PULSEDONECNT longin Number of received PULSE_DONE
interrupts since last transition from
INIT to ON
$(PREFIX):PULSEMISSED bi Pulse missed indicator. It will go high
if the number of pulses we read out
from the device between two arms !=
1.
$(PREFIX):STATUS mbbi Tracks controller status. Can be
NONE, PMS, ARMED,
PULSE_DONE and is mostly used for
development purposes.
$(PREFIX):RTM mbbo Adds the PINI option and default
setting to the parent’s record.

Table 34: sis8300lIrfDevice.template records

43(72)

Module Technical Documentation
Document Number
Date 20 April 2015

The following macros must be defined when loading the template:

Macro Description
PREFIX Name prefix
ASYN_PORT Asyn Port Name
PULSE_TYPE Default Pulse Type
RTM RTM type to select by default, can be:
e SIS8900 =0,
e DWC8VM1=1,
e DS8VM1=2,
e NONE=3

Table 35: sis8300IIrfDevice.template macros

3.4.1.2 sis8300lIrf-Main-ControlTable-CG.template

This template defines the database with records used to control and monitor the CT CG parameters

Name Type

Description

$(PREFIX):$(CTRL_TABLE_TYPE)-STAT | mbbi

State of the channel group, see [5].

$(PREFIX):$(CTRL_TABLE_TYPE)- longin
MAXNSAMPLES

Maximum number of elements in a
control table. Read only — information
is obtained directly from the device.

Table 36: sis8300IIrfControlTableChannelGroup.template records

The following macros must be defined
sis8300lIrfControl TableChannelGroup.template:

to successfully

load

the

Macro Description
PREFIX Name prefix
ASYN_PORT Asyn Port Name
CTRL_TABLE_TYPE Either SP of FF

44(72)

Module Technical Documentation
Document Number
Date 20 April 2015

ASYN_ADDR

3 for SP, 4 for FF

Table 37: sis8300IIrfControl TableChannelGroup.template macros

3.4.1.3 sis8300IIrf-Main-FFTable-CG.template
This template adds two FF specific records to the 3.4.1.2 template.

$(PREFIX):$(CTRL_TABLE_TYPE)-
TABLESPEED-RBV

Name Type Description
$(PREFIX):$(CTRL_TABLE_TYPE)- mbbo, Speed of the FF table, see 3.3.4.4
TABLESPEED

mbbi

Table 38: sis8300IIrfFFTableChannelGroup.template records

The following macros must be defined to successfully load the
sis8300lIrfFFTableChannelGroup.template:

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

CTRL_TABLE_TYPE FF

ASYN_ADDR 4

Table 39: sis83001IrfFFTableChannelGroup.template

3.4.1.4 sis8300lIrf-Main-ControlTable-CH.template

This template defines the database with records used to control and monitor the CT CH parameters

Name

Type

Description

STAT

$(PREFIX):$(CTRL_TABLE_TYPE)-
$(CHAN_NAME=PT$PULSE_TYPE))-

mbbi

State of the channel group, see [5].

45(72)

Module Technical Documentation
Document Number
Date

20 April 2015

$(PREFIX):$(CTRL_TABLE_TYPE)- waveform | | table, the —GET record has to be

$(CHAN_NAME=PT$PULSE_TYPE))-I manually processed and will read the
table from hardware, convert it from

$(PREFIX):$(CTRL_TABLE_TYPE)- 1Q sample to a float | sample.

$(CHAN_NAME=PT$PULSE_TYPE))-I-

GET

$(PREFIX):$(CTRL_TABLE_TYPE)- waveform | Q table, the —GET record has to be

$(CHAN_NAME=PT$PULSE_TYPE))-Q manually processed and will read the
table from hardware, convert it from

$(PREFIX):$(CTRL_TABLE_TYPE)- 1Q sample to a float Q sample

$(CHAN_NAME=PT$PULSE_TYPE))-Q-

GET

$(PREFIX):$(CTRL_TABLE_TYPE)- bo Write Table, process this record to

$(CHAN_NAME=PT$(PULSE_TYPE))- write specified | and Q tables to

WRTBL hardware.

$(PREFIX):$(CTRL_TABLE_TYPE)- longin Number of elements in the table that

$(CHAN_NAME=PT$PULSE_TYPE))- is actually written to hardware.

SMNM-RBV

$(PREFIX):$(CTRL_TABLE_TYPE)- waveform | Raw table that is currently in the

$(CHAN_NAME=PT$PULSE_TYPE))- device memory (containing 1Q

RAWTABLE-GET samples). Record must be manually
processed and will fetch the data from
the device memory every time it is.

Table 40: sis8300lIrfControl TableChannel.template records

The following macros must be defined to successfully load the
sis8300IIrfControlTableChannel.template

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

CTRL_TABLE_TYPE Either SP of FF

CTRL_TABLE_CG_NAME Either sp or ff

PULSE_TYPE The pulse this channel belongs to

46(72)

Module Technical Documentation
Document Number
Date 20 April 2015

CTRL_TABLE_MAX_NSAMPLES | Maximum number of elements in a control table

Table 41: sis8300IIrfControlTableChannel.template macros

3.4.1.5 sis8300lIrf-Main-Controller-CG.template

This template defines the database with records used to control and monitor the CTRL CG parameters.
In addition to standard definitions, this template also provides control for Pl error RMS statistics.

Name Type Description
$(PREFIX):LLRFCTRL-STAT mbbi State of the channel group, see [5].
$(PREFIX):TRGSETUP mbbo, Trigger setup, can be
$(PREFIX):TRGSETUP-RBV mbbi e MLVDS-012=0

e MLVDS-456=1

$(PREFIX): PIERR-SMNM-TOTAL longin Total number of Pl err samples,
acquired during RAMP UP + ACTIVE
phase.

$(PREFIX): PIERR-SMNM-RAMPUP longin Number of Pl error samples acquired

during RAMP UP phase.

$(PREFIX): PIERR-SMNM-ACTIVE longin Number of Pl error samples acquired
during ACTIVE phase.

$(PREFIX): ADC-SMNM-TOTAL longin Number of ADC samples acquired
during RAMP UP + ACTIVE phase.

$(PREFIX):OUTPUT-DRIVESEL bo, Select the source that will drive the

output:

$(PREFIX):OUTPUT-DRIVESEL-RBV bi

e Pl Driven (normal operation)
=0

e FFDriven=1

$(PREFIX):CHDATARDY bi Processes when channel data is ready,

Its forward link can for example be
used to trigger arbitrary functionality
that sets new parameters on the device.
If the chain of processing (database
link from this record to the parameter
record) is unbroken, the new

47(72)

Module Technical Documentation
Document Number
Date 20 April 2015

parameter(s) are written to hardware
before the board is armed again.

Table 42: sis8300lIrfControllerChannelGroup.template records

The following macros must be defined to successfully load the
sis8300lIrfControllerChannelGroup.template

Macro Description
PREFIX Name prefix
ASYN_PORT Asyn Port Name

PI_ERR_MAX NSAMPLES Maximum number of Pl error samples — used as DRVH limit

PI_ERR_SNM Default number of PI error samples
TRG_VAL Default trigger setup (optional, default value is 0)
OUTPUT_DRIVE Select the default source that will drive the output (optional,

default value is 0)

Table 43: sis8300lIrfControllerChannelGroup.template macros

3.4.1.6 sis8300IIrf-Main-IQSmpl-CH.template

This template defines the database with records used to control and monitor the 1Q CH parameters.

Name Type Description
$(PREFIX):IQSMPL-STAT mbbi Channel status, see [5]
$(PREFIX): IQSMPL-NEARIQM ao, Near 1Q parameter M
$(PREFIX) IQSMPL-NEARIQM -RBV ai

$(PREFIX): IQSMPL-NEARIQN ao, Near 1Q parameter N
$(PREFIX): IQSMPL-NEARIQN -RBV ai
$(PREFIX):IQSMPL-CAVINDELAYVAL longout | Cavity input delay
$(PREFIX):IQSMPL-CAVINDELAYVAL- ,

48(72)

Module Technical Documentation
Document Number

Date 20 April 2015
RBV longin
$(PREFIX):IQSMPL-CAVINDELAYEN bo, Cavity input delay enable
$(PREFIX):IQSMPL-CAVINDELAYEN- bi
RBV
$(PREFIX):IQSMPL-ANGOFFSETVAL ao, IQ angle offset
$(PREFIX):IQSMPL-ANGOFFSETVAL- ai
RBV
$(PREFIX):IQSMPL-ANGOFFSETEN bo, 1Q angle offset enable
$(PREFIX):IQSMPL-ANGOFFSETEN-RBV | bi

Table 44: sis83001IrflQSamplingChannel.template records

The following macros must be defined to successfully load the sis83001rflIOIQChannel.template

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

ASYN_ADDR 2

IQ_ANG_DRVH, High and low limit for the value of 1Q angle
IQ_ANG_DRVL

IQ_CAV_INP_DELAY_DRVH, | High and low limit for the value of cavity input delay
IQ_CAV_INP_DELAY_DRVL

Table 45: sis83001IrflQSamplingChannel.template macros

3.4.1.7 sis8300IIrf-Main-VMCtrl-CH.template

This template defines the database with records used to control and monitor the VM CH parameters.

Name Type | Description

$(PREFIX):VM-STAT mbbi | Channel Status, see [5]

49(72)

Module Technical Documentation
Document Number

Date 20 April 2015

$(PREFIX):VM-MAGLIMEN bo, Enable/disable magnitude limiter

$(PREFIX): VM-MAGLIMEN-RBV bi

$(PREFIX): VM-MAGLIMVAL ao, Magnitude limiter value

$(PREFIX): VM- MAGLIMVAL-RBV ai

$(PREFIX): VM-MAGLIMSTAT bi Magnitude limit status,
None=0, Active=1

$(PREFIX): VM-INVIEN bo, Enable inverse | output

$(PREFIX): VM-INVIEN-RBV bi

$(PREFIX): VM-INVQEN bo, Enable inverse Q output

$(PREFIX): VM-INVQEN-RBV bi

$(PREFIX): VM-SWAPIQEN bo, Swap 1Q.

$(PREFIX) VM-SWAPIQEN-RBV bi No=0, Yes=1

$(PREFIX):VM-PREDISTEN bo, Enable pre-distortion of the input to
VM

$(PREFIX):VM-PREDISTEN-RBV bi

$(PREFIX):VM-PREDIST-RCO00 ao, VM pre-distortion matrix value for
RC00

$(PREFIX):VM-PREDIST-RC00-RBV ai

$(PREFIX):VM-PREDIST-RC01 ao, VM pre-distortion matrix value for
RCO1

$(PREFIX):VM-PREDIST-RC01-RBV ai

$(PREFIX):VM-PREDIST-RC10 ao, VM pre-distortion matrix value for
RC10

$(PREFIX):VM-PREDIST-RC10-RBV ai

$(PREFIX):VM-PREDIST-RC11 ao, VM pre-distortion matrix value for
RC11

$(PREFIX):VM-PREDIST-RC11-RBV ai

$(PREFIX):VM-PREDIST-DCOI ao, Pre-distortion DC offset for |
component

50(72)

Module Technical Documentation
Document Number

Date 20 April 2015

$(PREFIX):VM-PREDIST-DCOI-RBV ai

$(PREFIX):VM-PREDIST-DCOQ ao, Pre-distortion DC offset for Q
component

$(PREFIX):VM-PREDIST-DCOQ-RBV ai

Table 46: sis8300lIrf\VMControlChannel.template records

The following macros must be defined to successfully load the sis8300IIrflOVMChannel.template

Macro Description
PREFIX Name prefix
ASYN_PORT Asyn Port Name
ASYN_ADDR 3
MAGLIM_DRVH, Highest and lowest magnitude limit value accepted by hardware
MAGLIM_DRVL (see
PreDistRC10 asynFloat64 Pre-distortion matrix, value R
[-2, 2t - 2712] — [-2.0, 1.9997
PreDistRC11 asynFloat64 Pre-distortion matrix, value Rt
[-2%, 21 - 212] — [-2.0, 1.9997
PreDistDCOI asynFloat64 Pre-distortion DC offset for | |
[-2°, 2° — 215] — [-1.0, 1.9997
PreDistDCOQ asynFloat64 Pre-distortion DC offset for Q
[-2°, 2° — 2'15] — [-1.0, 1.9997
Table 20)
PREDISTRC_DRVH, Highest and lowest value for pre-distortion matrix element
PREDISTRC_DRVL accepted by hardware (see
PreDistRC10 asynFloat64 Pre-distortioT matrix, value R!

51(72)

Module Technical Documentation

Document Number
Date

20 April 2015

[_21, 21 _ 2—12

—[-2.0, 1.9997

PreDistRC11

asynFloat64

Pre-distortion matrix, value R

[-2, 2t - 2712] — [-2.0, 1.9997
PreDistDCOI asynFloat64 Pre-distortion DC offset for I |
[-2°, 20 — 2-15] — [-1.0, 1.9997
PreDistDCOQ asynFloat64 Pre-distortion DC offset for Q
[-2°, 2° — 215] — [-1.0, 1.9997

Table 20)

PREDISTDC_DRVH,
PREDISTDC_DRVL

Highest and lowest value for DC offset accepted by hardware

(see

PreDistRC10

asynFloat64

Pre-distortion matrix, value R

[_21, 21 _ 2-12

— [-2.0, 1.9997

PreDistRC11

asynFloat64

Pre-distortiom matrix, value R

[_21, 21 _ 2—12

— [-2.0, 1.9997

PreDistDCOI

asynFloat64

Pre-distortion DC offset for | |

[_20, 20 _ 2-15

— [-1.0, 1.9997

PreDistDCOQ

asynFloat64

Pre-distortion DC offset for Q

[_20, 20 _ 2—15

— [-1.0, 1.9997

Table 20)

PREDISTORT_VM_OUT_EN

Set to 1 to enable pre-distortion by default

INVERT_Q

Set to 1 to enable inversion by default

INVERT_I

Set to 1 to enable the inversion by default

Table 47: sis8300IIrf\VMControlChannel.template macros

52(72)

Module Technical Documentation
Document Number
Date 20 April 2015

3.4.1.8 sis8300lIrf-Main-ILOCK-CH.template

This template defines the database with records used to control and monitor the Interlock CH parameters.

Name Type Description
$(PREFIX):$(ILOCK_CH)-STAT mbbi Channel Status, see [5]
$(PREFIX):$(ILOCK_CH)-HARINP bi Current HArlink iput status,
Low=0, High=1
$(PREFIX):$(ILOCK_CH)-CONDITION mbbo, Interlock condition select, can be:

$(PREFIX):$(ILOCK_CH)-CONDITION-RBV | mbbi DISABLED =0
RISING_EDGE =1
FALLING_EDGE =2
HIGH_LEVEL =3

LOW_LEVEL =4

Table 48: sis83001IrfILOCKChannel.template records

The following macros must be defined to successfully load the sis8300lIrfPIChannel.template

Macro Description
PREFIX Name prefix
ASYN_PORT Asyn Port Name
ILOCK_CH ILOCKO, ILOCK1, ILOCKZ2, ILOCK3
ASYN_ADDR e |LOCKO =5,

e |LOCK1 =6,

e |ILOCK2=7,

e |ILOCK3=8

(see ILOCK_CH macro)

Table 49: sis8300IIrfILOCKChannel.template macros

3.4.1.9 sis8300lIrf-Main-PI-CH.template

This template defines the database with records used to control and monitor the PI CH parameters. In
addition it defines some records required for Pl err RMS statistics.

53(72)

Module Technical Documentation
Document Number

Date 20 April 2015
Name Type Description
$(PREFIX):$(PI_TYPE)-STAT mbbi Channel Status, see [5]
$(PREFIX):$(PI_TYPE)-OVRFLW bi Overflow status,
None=0, overflov=1
$(PREFIX):$(PI_TYPE)-FIXEDSPVAL ao, Fixed SP value

$(PREFIX):$(PI_TYPE)-FIXEDSPVAL-RBV | ai

$(PREFIX):$(P1_TYPE)-FIXEDSPEN bo, Enable/disable fixed SP
$(PREFIX):$(P1_TYPE)-FIXEDSPEN-RBV

bi
$(PREFIX):$(P1_TYPE)-FIXEDFFVAL 20, Fixed FF value

$(PREFIX):$(PI_TYPE)-FIXEDFFVAL-RBV | ai

$(PREFIX):$(P1_TYPE)-FIXEDFFEN bo, Enable/disable fixed FF
$(PREFIX):$(P1_TYPE)-FIXEDFFEN-RBV

bi
$(PREFIX):$(P1_TYPE)-GAINK 20, PI gain K value
$(PREFIX):$(P1_TYPE)-GAINK-RBV ai
$(PREFIX):$(PI_TYPE)-GAINTSDIVTI ao, Pl gain Ts/Ti value

$(PREFIX):$(PI_TYPE)-GAINTSDIVTI-RBV | ai

$(PREFIX):$(PI_TYPE)-SATMAX ao, Maximum saturation value
$(PREFIX):$(P1_TYPE)-SATMAX-RBV ai

$(PREFIX):$(PI_TYPE)-SATMIN ao, Minimum saturation value
$(PREFIX):$(PI_TYPE)-SATMIN-RBV ai

$(PREFIX):$(PI_TYPE)-ERR waveform | Pl error
$(PREFIX):$(PI_TYPE)-ERR-SMNM-RBV longin Number of PI errors read
$(PREFIX):$(PI_TYPE)-RMS ai Current Pl error RMS value

54(72)

Module Technical Documentation
Document Number
Date 20 April 2015

$(PREFIX):$(PI_TYPE)-RMS-AVERAGE ai Cumulative average Pl error RMS
value in the last RMS-
PULSECNT pulses

$(PREFIX):$(PI_TYPE)-RMS-MAX ai Maximum PI error RMS value in
the last RMS-PULSECNT pulses

$(PREFIX):$(PI_TYPE)-RMS-PULSECNT longin Number of pulses over which
RMS statistics was tracked

$(PREFIX):$(PI_TYPE):RMS- longout, Number of samples to ignore at the

SMNMIGNORE end of the pulse when calculating

longin the RMS

$(PREFIX):$(PI_TYPE):RMS-

SMNMIGNORE-RBV

$(PREFIX):$(PI_TYPE)-RMS-RESET bo, Reset RMS statistics

$(PREFIX):$(PI_TYPE)-RMS-RESET-RBV bi

Table 50: sis83001IrfPIChannel.template

The following macros must be defined to successfully load the sis8300IIrfPIChannel.template

Macro Description
PREFIX Name prefix
ASYN_PORT Asyn Port Name
PI_TYPE PI-l or PI-Q
ASYN_ADDR 0 for PI-1, 1 for PI-Q

PI_ERR_MAX_NSAMPLES Maximum number of Pl error samples

FIXEDSP_DRVH, Highest and lowest value for fixed SP value accepted by
FIXEDSP_DRVL hardware (see Table 24)
FIXEDFF_DRVH, Highest and lowest value for fixed FF value accepted by
FIXEDFF_DRVL hardware (see Table 24)
GAINK_DRVH, Highest and lowest value for K Gain value accepted by

55(72)

Module Technical Documentation
Document Number

Date 20 April 2015

GAINK_DRVL hardware (see Table 24)

GAINTSDIVTI_DRVH, Highest and lowest value for Ts/Ti Gain value accepted by

GAINTSDIVTI_DRVL hardware (see Table 24)

GAIN_PREC Number of decimal points for Ts/Ti Gain value accepted by
hardware (see Table 24)

SATMAX_DRVH, Highest and lowest value for Maximum saturation value

SATMAX_DRVL accepted by hardware (see Table 24)

SATMIN_DRVH, Highest and lowest value for Minimum saturation value

SATMIN_DRVL accepted by hardware (see Table 24)

Table 51: sis8300IIrfPIChannel.template macros

3.4.1.10 sis8300lIrf-Main-ModRippleFilt-CH.template

This template defines the database with records used to control and monitor the Modulator ripple filter
parameters.

Name Type Description

$(PREFIX): MODRIPPFIL-STAT mbbi Channel Status, see [5]

$(PREFIX): MODRIPPFIL-CONSTS ao, Modulator Ripple Filter Constant
S

$(PREFIX): MODRIPPFIL-CONSTS-RBV ai

$(PREFIX): MODRIPPFIL-CONSTC ao, Modulator Ripple Filter Constant
C
$(PREFIX): MODRIPPFIL-CONSTC-RBV ai

$(PREFIX): MODRIPPFIL-CONSTA ao, Modulator Ripple Filter Constant
A
$(PREFIX): MODRIPPFIL-CONSTA-RBV ai

$(PREFIX): MODRIPPFIL-STARTEVNT mbbo, Modulator Ripple Filter Start
Event
$(PREFIX):MODRIPPFIL-STARTEVNT-RBV | mbbi

$(PREFIX): MODRIPPFIL-STOPEVNT mbbo, Modulator Ripple Filter Stop
Event
$(PREFIX): MODRIPPFIL-STOPEVNT-RBV | mbbi

56(72)

Module Technical Documentation
Document Number
Date 20 April 2015

$(PREFIX): MODRIPPFIL-QEN bo, Enable Modulator ripple filter for
Q part

$(PREFIX): MODRIPPFIL-QEN-RBV bi

$(PREFIX): MODRIPPFIL-IEN bo, Enable Modulator ripple filter for
Q part

$(PREFIX): MODRIPPFIL-IEN-RBV bi

Table 52: sis8300IIrfModRippleFiltChannel.template records

The following macros must be defined in order to successfully load the template

Macro Description
PREFIX Name prefix
ASYN_PORT Asyn Port Name
ASYN_ADDR 4

CONSTS_DRVH,
CONSTS_DRVL

Highest and lowest value for modulator ripple filter constant S
value accepted by hardware (see Table 26)

CONSTC_DRVH,
CONSTC_DRVL

Highest and lowest value for modulator ripple filter constant C
value accepted by hardware (see Table 26)

CONSTA_DRVH,
CONSTA_DRVL

Highest and lowest value for modulator ripple filter constant A
value accepted by hardware (see Table 26)

Table 53: sis8300lIrfModRippleFiltChannel.template macros

3.4.1.11 sis8300IIrf-Main-NotchFilt-CH.template

This template defines the database with records used to control and monitor the Modulator ripple filter

parameters.
Name Type Description
$(PREFIX): NOTCHFIL-CONSTAREAL ao, Notch Filter Constant A real part

$(PREFIX): NOTCHFIL-CONSTAREAL-RBV | ai

$(PREFIX): NOTCHFIL-CONSTAIMAG ao,

Notch Filter Constant A imaginary

57(72)

Module Technical Documentation

Document Number

Date

20 April 2015

$(PREFIX): NOTCHFIL-CONSTAIMAG-RBV | ai part

$(PREFIX): NOTCHFIL-CONSTBREAL ao, Notch Filter Constant B real part

$(PREFIX): NOTCHFIL-CONSTBREAL-RBYV | ai

$(PREFIX): NOTCHFIL-CONSTBIMAG ao, Notch Filter Constant B real
imaginary part

$(PREFIX): NOTCHFIL-CONSTBIMAG-RBYV | ai

$(PREFIX): NOTCHFIL-IEN bo, Enable Notch filter

$(PREFIX): NOTCHFIL-IEN-RBV bi

Table 54: sis8300lIrfNotchFiltChannel.template records

The following macros must be defined in order to successfully load the template

Macro Description
PREFIX Name prefix
ASYN_PORT Asyn Port Name
ASYN_ADDR 4

CONSTS_DRVH,
CONSTS_DRVL

Highest and lowest value for modulator ripple filter constant S
value accepted by hardware (see Table 26)

CONSTC_DRVH,
CONSTC_DRVL

Highest and lowest value for modulator ripple filter constant C
value accepted by hardware (see Table 26)

CONSTA_DRVH,
CONSTA_DRVL

Highest and lowest value for modulator ripple filter constant A
value accepted by hardware (see Table 26)

Table 55: sis8300lIrfModRippleFiltChannel.template macros

3.4.1.12 sis8300lIrf-Main-SigMon-CG.template

This template defines records used to control the SIGMON CG

Name

Type

Description

58(72)

Module Technical Documentation
Document Number
Date 20 April 2015

$(PREFIX):SMON-STAT mbbi Channel Group status, see [5]

Table 56: sis8300IIrfSigmonChannelGroup.template records

The following macros must be defined in order to successfully load the template

Macro Description
PREFIX Device Prefix
ASYN_PORT Asyn Port Name
ASYN_ADDR Value should be 5

3.4.1.13 sis8300lIrf-Main-SigMon-CH.template

This template defines the database with records used to control and monitor the Signal Monitor
parameters.

Name Type Description
$(PREFIX):$(CHANNEL_ID)-SMON-STAT mbbi Channel Status, see [5]
$(PREFIX):$(CHANNEL_ID)-SMON- bi Signal monitor alarm status
ALARMSTAT
$(PREFIX):$(CHANNEL_ID)-SMON- bi Signal monitor PMS status
PMSSTAT
$(PREFIX):$(CHANNEL_ID)-SMON- bi Signal monitor Interlock status
ILCKSTAT
$(PREFIX):$(CHANNEL _ID)-SMON- ai Current magnitude for the
MAGCURR corresponding ADC channel
$(PREFIX):$(CHANNEL_ID)-SMON- ai Maximum or minimum
MAGMINMAX magnitude for the corresponding
ADC channel during the last
signal monitor active period.
$(PREFIX):$(CHANNEL_ID)-SMON- ao, Signal monitor magnitude
MAGTRESHVAL threshold value

59(72)

Module Technical Documentation
Document Number
Date 20 April 2015

$(PREFIX):$(CHANNEL _ID)-SMON-
ACDCSEL-RBV

$(PREFIX):$(CHANNEL_ID)-SMON- ai
MAGTRESHVAL-RBV
$(PREFIX):$(CHANNEL_ID)-SMON- mbbi, Event defining the start of signal
STARTEVNT monitor active period

mbbo
$(PREFIX):$(CHANNEL_ID)-SMON-
STARTEVNT-RBV
$(PREFIX):$(CHANNEL_ID)-SMON- mbbo, Event defining the end of signal
STOPEVNT monitor active period

mbbi
$(PREFIX):$(CHANNEL_ID)-SMON-
STOPEVNT-RBV
$(PREFIX):$(CHANNEL_ID)-SMON- bo, Alarm condition
ALARMCND

bi
$(PREFIX):$(CHANNEL_ID)-SMON-
ALARMCND-RBV
$(PREFIX):$(CHANNEL_ID)-SMON-PMSEN | bo, Enable/Disable PMS if alarm is

raised

$(PREFIX):$(CHANNEL_ID)-SMON- bi
PMSEN-RBV
$(PREFIX):$(CHANNEL_ID)-SMON- bo, Enable/Disable Interlock if alarm
ILOCKEN is raised

bi
$(PREFIX):$(CHANNEL _ID)-SMON-
ILOCKEN-RBV
$(PREFIX):$(CHANNEL_ID)-SMON- bo, Signal type select — AC or DC
ACDCSEL

bi

Table 57: sis8300IIrfSignalMonitorChannel.template records

The following macros must be defined in order to successfully load the template

Macro Description

PREFIX Name prefix

60(72)

Module Technical Documentation
Document Number

Date 20 April 2015
ASYN_PORT Asyn Port Name
CHANNEL_ID Al2, Al3, Al4, Al5, Al6, Al7, Al8, Al9
ASYN_ADDR Canbe?2,3,4,5,6,7,8,9and corresponds to the ADC channel
number (see macro CHANNEL _ID)
MAGTRESH_DRVH, Highest and lowest value for modulator ripple filter constant S
MAGTRESH_DRVL value accepted by hardware (see Table 28Table 26)

Table 58: SignalMonitorChannel.template macros

3.4.1.14 sis8300IIrf-Main-AI-CG.template

The template for Al Channel overrides some settings from sis8300AlICHannelGroup.template [6]. The
list of overridden settings can be found in Table 32. In order to successfully load the template, the
mentioned generic Al CG template must be loaded first. The following macros must be defined when
loading the template:

Macro Description
PREFIX Name prefix
CHANNEL_ID Unique ID (usually Al, has to be the same as when loading

the sis8300AIChannelGroup.template)

Al_NELM Max number of ADC samples per one channel

Table 59: sis83001IrfAlChannelGroup.template macros

3.4.1.15 sis8300IIrf-Main-AI-CH.template

The template for Al channel overrides some settings from sis8300AIChannel.template [6] and adds
functionality specific to AIO (cavity input) and All (reference input). In order to successfully load the
template, the mentioned generic Al CH template must be loaded first.

Name Type Description

$(PREFIX):$(CHANNEL_ID)-ENBL bo Should always be set to 1 when using
the Struck SIS8300L in LLRF context
(see Table 5)

$(PREFIX):$(CHANNEL_ID)-IN ai Overrides the single sample read
option for Al channel

61(72)

Module Technical Documentation
Document Number
Date 20 April 2015

GETNEWMAPOINT

$(PREFIX):$(CHANNEL_ID)-ANG ai Signal Angle, see Table 33
$(PREFIX):$(CHANNEL_ID)-MAG ai Signal Magnitude, see Table 33
$(PREFIX):$(CHANNEL _ID)-I ai Signal I, see Table 33
$(PREFIX):$(CHANNEL _ID)-Q ai Signal Q, see Table 33
$(PREFIX):$(CHANNEL_ID)- bo Read new MA point from the device

and calculate the corresponding 1Q
values, see Table 33

$(PREFIX):$(CHANNEL_ID)-
NEWMAPOINT

bi New MA and calculated 1Q point is
available for readout, see Table 33

Table 60: sis8300IIrfAlChannel.template records

The following macros must be defined when loading the template:

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

ASYN_ADDR Channel Number (0-9), corresponds to ADC channel
number

CHANNEL_ID Unique ID (usually AlO to Al9, the same as when loading
the sis8300AIChannel.template)

ENABLE 1 for enabled, O for disabled

Table 61: sis83001IrfAlChannel.template macros

3.4.1.16 sis8300lIrf-Main-CalcFixedPointMagAng.template

This channel adds extra records, used to calculate Magnitude and Angle corresponding to the fixed SP and fixed
FF point settings from the 33LLRF Pl Channel (sis8300IIrfPIChannel Class). This is mostly used

during setup procedure (see

62(72)

Module Technical Documentation
Document Number
Date 20 April 2015

The following macros must be defined when loading the template:

Macro Description

PREFIX Name prefix

PI_ONE, PI_TWO Has to correspond to PI channel names defined in Table 51.
Normally PI-1 and P1-Q

Table 65: sis8300IIrf-RMS-statistics-reset.template macros

sis8300I1rf-Setup.template).

Name Type Description

$(PREFIX):PI- calc This is where the MA point is

FIXED$(FIXED_POINT_TYPE)MAG calculated from the 1Q point. The VAL
field of the record holds the magnitude
value

$(PREFIX):PI- ai Angle value

FIXED$(FIXED_POINT_TYPE)ANG

Table 62: sis8300IIrf-Main-CalcFixedPointMagAng.template records

The following macros must be defined when loading the template:

Macro Description
PREFIX Name prefix
FIXED_POINT_TYPE FF or SP

Table 63: sis8300IIrf-Main-CalcFixedPointMagAng.template macros

3.4.1.17 sis8300IIrf-RMS-statistics-reset.template

This template adds just one record, which allows for a “simultaneous” reset of both I and Q PI error
RMS statistics (see LLRF PI Channel (sis8300lIrfPIChannel Class)).

Name Type Description

63(72)

Module Technical Documentation
Document Number
Date 20 April 2015

$(PREFIX):PI-RMS-RESET

fanout

Processing this record will cause a
reset of both PI-I and PI-Q RMS
average and Max value

Table 64: sis8300lIrf-RMS-statistics-reset.template records

The following macros must be defined when loading the template:

Macro

Description

PREFIX

Name prefix

PI_ONE, PI_TWO

Has to correspond to PI channel names defined in Table 51.
Normally PI-1 and PI1-Q

Table 65: sis8300IIrf-RMS-statistics-reset.template macros

3.4.1.18 sis8300lIrf-Setup.template

This template defines all the records that are used during the initial setup of the controller.

Name Type Description

$(PREFIX):SETUP-ACT bo, Used to set or indicate that the setup is
active. One should not start the setup

$(PREFIX):SETUP-ACT-RBV bi procedure by writing to this record.
The SETUP-START record is used for
this.

$(PREFIX):SIGNALACT bi Indicates if the signal is currently
active. Only to be used when operating
in Continuous Wave (CW) mode.

$(PREFIX):SETUP-START bo Write 1 to this record to start the setup
and 0 to stop/abort the setup.

Table 66: sis8300IIrf-Setup.template records

The following macros must be defined when loading the template:

Macro

Description

PREFIX

Name prefix

64(72)

Module Technical Documentation
Document Number
Date 20 April 2015

ASYN_PORT Asyn Port Name

Table 67: sis8300I1rf-Setup.template macros

3.4.1.19 sis8300lIrf-SpecOp-Device.template

This template defines all the records that are used when device is operating in special operating modes.

Name Type Description

$(PREFIX):FORCETRIGG mbbo, Used for sending a specific trigger to
the device.

$(PREFIX):FORCETRIGG-RBV mbbi

$(PREFIX):OPMODE mbbo, Used for selecting a specific operating
mode

$(PREFIX):OPMODE-RBV mbbi

$(PREFIX):SIGNALACT bi Indicates if the signal is currently
active. Only to be used when operating
in Continuous Wave (CW) mode.

Table 68: sis8300lrf-SpecOp-Device.template records

The template must always be loaded after the 42sis8300lIrf-Main-Device.template.The following
macros must be defined when loading the template:

Macro Description
PREFIX Name prefix
ASYN_PORT Asyn Port Name

Table 69: sis8300lIrf-SpecOp-Device.template macros

3.4.1.20 sis8300lIrf-SpecOp-ControlTable-CH.template

This template defines records for settings defines in LLRF Special Operation Control Table Channel
(sis8300lIrfControlTableChannelSpecOp Class).

Name Type Description

$(PREFIX):$(CTRL_TABLE_TYPE)-SM- | bo, FF table mode

65(72)

Module Technical Documentation
Document Number
Date 20 April 2015

FFTABLEMODE bi

$(PREFIX):$(CTRL_TABLE_TYPE)-SM-
FFTABLEMODE-RBV

(PREFIX):$(CTRL_TABLE_TYPE)-SM- wavefor | Set the Angle part of the Control table
ANG m

$(PREFIX):$(CTRL_TABLE_TYPE)-SM- | wavefor | Processing this record will read the
ANG-GET m Angle part of the control table from
device memory. It has to be processed
manually. 1/O interrupts are disabled.

$(PREFIX):$(CTRL_TABLE_TYPE)-SM- | longin Current number of elements in the
ANG-SMNM-RBV Control table that is actually written to
memory (see 3.3.4.5)

$(PREFIX):$(CTRL_TABLE_TYPE)-SM- | wavefor | Set the magnitude part of the control
MAG m table

$(PREFIX):$(CTRL_TABLE_TYPE)-SM- | wavefor | Processing this record will read the
MAG-GET m magnitude part of the control table
from device memory. It has to be
processed manually. I/O interrupts are
disabled.

$(PREFIX):$(CTRL_TABLE_TYPE)-SM- | longin Current number of elements in the
MAG-SMNM-RBV Control table that is actually written to
memory (see 3.3.4.5)

Table 70: sis8300lrf-SpecOp-ControlTable-CH.template records

The template must always be loaded after sis83001Irf-Main-ControlTable-CH.template. The following
macros need to be defined in order to successfully load the template:

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

CTRL_TABLE_TYPE FF or SP, see Table 41

CTRL_TABLE_CG_NAME Natr)rI]e of the corresponding channel group, sp or ff, see
Table 41

66(72)

Module Technical Documentation
Document Number
Date 20 April 2015

NUM_PULSE_TYPES Number of pulse types, has to be the same as defined in
Table 35: sis8300lIrfDevice.template macros

Table 71: is83001rf-SpecOp-Control Table-CH.template macros

3.5 Startup Snippets

Startup snippets loading the appropriate records are defined in the module. All the startup snippets are
explained on the wiki page ()

3.6 Demo application

3.7 Software Version

The Struck SIS8300L LLRF user-space library up to version 1.2 was developed using:
e kmod-sis8300 version 1.4

The Struck SIS8300L LLRF epics module version 1.2 was developed using:

e EPICS Base 3.14.12.3
e AsynDriver 4.21

e NDS23.1

e epics-sis8300 module

If you are using a different version of any part of the software consult the release notes for possible
changes.

3.8 Learning Feed Forward

Learning Feed Forward Algorithm (LFF) will try to compensate for repetitive errors, such as Lorentz
force detuning, by correcting the FF control table (Table 3). The development of the algorithm is out of
scope of this document and will not be developed by ICS.

The interface of the algorithm with the LLRF software module will be on EPICS database level and will
depend on the output of the algorithm. We propose two options:

1. The output of the algorithm is a FF table that replaces the previous FF table
2. The output of the algorithm is a FF correction table which needs to be added to the existing FF.

In the first case, the FF angle and FF magnitude tables are already available in the database. In the
second case, the impact of the algorithm can be included as:

FF = FF_MAIN + FF_CORR.

This option requires additional development. In both cases, the output of the algorithm can be written
to the corresponding waveform record trough Channel Access by using any of the CA client interfaces

67(72)

Module Technical Documentation
Document Number
Date 20 April 2015

listed here: http://www.aps.anl.gov/epics/extensions/ under "CA Client Interfaces to other tools and
languages". List of supported languages and tools is extensive and we believe that it offers enough
variety, so there is no plan to add support for any other language/tool.

In either case there is another decision that needs to be made: will the output of the algorithm already
provide angle and magnitude table joined into one, or will this be left to software (see section 3.2.2.1).

68(72)

http://www.aps.anl.gov/epics/extensions/

Module Technical Documentation
Document Number
Date 20 April 2015

4 REFERENCES

[1] Struck, SIS8300-L uTCA FOR PHYSICS Digitizer, Version: SIS8300L-M-2008-1-V100, 2014.

[2] Struck, SIS8900 uTCA FOR PHYSICS RTM, Version: SIS8900-M-1-1-V104, 2013.

[3] Desy and Struck, DWC8VM1 8 Channel Downconverter One Channel Vectormodulator RTM,
Version: DWC8VM1-M-1-1-V101, 2014.

[4] F. Kristensen, LLRF Control System For ESS - Specification, version 2.6, Lund: LTH, 2015.

[5] “NDS Software Developer Manual”.

[6] K. Strnisa, EPICS sis8300 Module Technical Documentation (rpm: codac-core-4.1-epics-sis8300-
doc), Cosylab, 2014.

[7] S. Peggs, Technical Design Report, Lund: European Spallation Source, 2013.

[8] N. Claesson, Data On Demand (DOD) Module Technical Documentation (rpm: codac-core-4.1-
epics-dod-doc), Cosylab, 2014.

[9] R. Stefanic, Timing Reciever Module Technical Documentation (rpm: codac-core-4.1-epics-tr-
doc), Cosylab, 2013.

69(72)

Module Technical Documentation

Document Number

Date 20 April 2015

5 LIST OF ABBREVIATIONS

Abbreviation

Definition

cs
ICS
S
HW
EPICS
LLRF
AMC
RTM
FF
LFF
SP
HV

PI
cw
OPI
NDS
css
BOY
PV
MTCA/UTCA/UTCA
MTCA.4

Control System
Integrated CS
Software

Hardware

Experimental Physics and Industrial Control System

Low Level RF

Advanced Mezzanine Card
Rear Transition Module
Feed Forward

Learning FF

Set Point

High Voltage
Proportional Integral
Continuous Wave
Operator Interface
Nominal Device Support
Control System Studio
Best OPI, Yet

EPICS Process Variable
MicroTCA

uTCA For Physics

70(72)

Module Technical Documentation
Document Number
Date 20 April 2015

6 APPENDIX: CURRENT DEVELOPMENT SYSTEM

The development of firmware and software components for the LLRF system is being developed in
parallel. On top of that, since there is a lot of functionality that the system will have to provide in the
end, they are being developed and added to the system one after another. Not everything listed in the
document is already implemented (either at the firmware or software level) or even defined properly.
Here is a list of things to be aware of:

Function Section Description

reference
Signals connected to | 2.2 at this point the board only takes two inputs, the cavity probe on the first Al
the Al channels channel (Al1) and the reference input on the second (Al2). Channels 3 -5

can have any input and have signal monitors, channels 6 — 9 are hijacked by
FPGA and contain intermediate processing results

FPGA processing | 2.2 Right now, only PI regulator and FF correction blocks are realized on the
blocks and Control FPGA. Blocks 3-5 are not yet properly defined and are not included in the
Tables 2.3.1 FPGA [4].

This of course affects the CTs that are available through software

Signal Monitoring 3.2.2.6 Signal monitoring will eventually be available on all channels except cavity
and reference input. At this point, Channels 6 -9 are hijacked by the firmware
so there are no signal monitors available (the functionality is there though).

If interlock on alarm is enabled, the Harlink input 0 will go HIGH when alarm
is triggered on a channel.

71(72)

Module Technical Documentation
Document Number
Date 20 April 2015

7 APPENDIX: CONTROL TABLE GENERATION

So far there have been no requests for generating the FF and SP tables from parameters, but based on
the example from DESY we can assume that the tables will be generated in SW from some user-defined
physical parameters, such as:

e RF field gradient,

e Phase,

e Smoothing type,

e Sampling frequency of the table,
¢ Filling and flattop duration...

Generating a table can be viewed as another mode of operation of the controller. This adds up to three
modes of operation:

1. User — define (SP or FF) table,
2. User — defined (SP or FF) fixed point,
3. Generate the (FF or SP) table from parameters

12(72)

