

Module Technical Documentation

Document Number

Date Monday, 20 April 2015

Revision

 State Draft

LLRF System For ESS – Software Module Technical Documentation

Author Affiliation Reviewer Approver

Urša Rojec Cosylab Klemen Strniša

Alexander Söderqvist Cosylab

Module Technical Documentation

Document Number

Date 20 April 2015

2(72)

DOCUMENT REVISION HISTORY

Version Reason for revision Date

1.0 Initial version 2014-03-07

1.1  First review comments

 Added asynReason list and NDS Class descriptions

2014-06-12

1.2  Adding new functionality according to firmware updates,

 Added demo application description

 Removed obsolete appendices

 Added sis8300noAO.db, sis8300Reg.db and

sis8300llrfReg.db to description

 Fixed GUI instructions – added new screenshots

2014-12-22

  Second review comments 2015-01-21

1.3  FF Table Speed Settings

 Modulator Ripple Filter Settings

2015-01-23

1.4  Added EPICS Status tab screenshot, updated others 2015-02-26

2.0 Major changes due to

 Transition from MA to IQ control in firmware

 Changes in the generic sis8300 epics module

2015-02-27

2.1  Added Signal Monitoring

 Added New OPI screenshots

 Added Demo Screenshots

 Added RTM Settings

 Added Interlock

 Added Special Operating Modes

2015-04-15

2.2  General Update of exported NDS parameters

 Added Demo Application (partially – GUI)

2015-04-20

2.3  Updated the epics module to the latest changes in the code

 Added Control Table Generation OPI

 Added Timing OPI

 Added Calibration Procedure OPI

2015-05-26

Module Technical Documentation

Document Number

Date 20 April 2015

3(72)

 Added Special Operating Modes OPI

 Added demo ioc startup settings

 Added demo archiver explanation

 Added timestamping information

 Added hardware setup section with figures

 Added rtm description settings

 Added information section – where to find

 Fixed the errors in current development system

information (AI6 is hijacked also)

 Updated the Main and overview screenshot and

description

 Added python, numpy and pyepics installation

instructions

 Added archiver installation and startup information

 Removed cavity and reference DC offset

2.4  Updated Scripts section

 Added typical Operation Section

2015-06-01

  Updated the Main screen 2015-06-03

2.5  Added RTM connection Instructions 2015-06-11

2.6  Removed the user manual – it is now available on the wiki 2015-10-06

2.7  Update after major code refactoring 2016-01-15

2.8  Fixed broken references and figures.

 Add notch filter

 Added writing of control tables PV

 New Channel Data Ready PV

2016-12-08

Module Technical Documentation

Document Number

Date 20 April 2015

4(72)

TABLE OF CONTENTS

1 About This Document ... 6

2 Theory of Operation .. 7

2.1 Overview of Hardware and Software Components ... 7

2.2 Hardware Operation .. 9

2.3 Software Operation .. 10

2.3.1 Control Tables ... 11

2.3.2 Control System State Machine .. 12

3 Architecture ... 14

3.1 Kernel Module ... 14

3.1.1 Implementation .. 14

3.2 User-space Library .. 14

3.2.1 Implementation .. 14

3.2.2 Exported interface ... 14

3.2.3 Generic sis8300 interface and its altered functionality in LLRF context 16

3.3 EPICS Device Support - NDS ... 18

3.3.1 Responsibilities ... 18

3.3.2 Implementation .. 19

3.3.3 Driver Initialization Parameters .. 20

3.3.4 Exported interface ... 20

3.4 EPICS Database .. 42

3.4.1 Exported interface ... 42

3.5 Startup Snippets ... 67

3.6 Demo application .. 67

3.7 Software Version ... 67

3.8 Learning Feed Forward ... 67

4 References ... 69

5 List of Abbreviations ... 70

6 APPENDIX: Current Development System .. 71

7 APPENDIX: Control Table Generation .. 72

Module Technical Documentation

Document Number

Date 20 April 2015

5(72)

Module Technical Documentation

Document Number

Date 20 April 2015

6(72)

1 ABOUT THIS DOCUMENT

As this is a rather long description of the LLRF software functionality we understand that reading it all in one

piece takes a lot of time. For a feel of the software workings we recommend that you at least take a

look at http 1 user manual

Theory of Operation and EPICS Device Support - NDS (Specifically: 3.3.13.3.2, 3.3.3 and 3.3.4)

chapters.

This document is a software reference manual. For the user manual see:

https://ess-ics.atlassian.net/wiki/display/HAR/Low+Level+RF+System

http 1 user manual

https://ess-ics.atlassian.net/wiki/display/HAR/Low+Level+RF+System

Module Technical Documentation

Document Number

Date 20 April 2015

7(72)

2 THEORY OF OPERATION

The LLRF system will be responsible for controlling the field in accelerating cavities throughout the

entire accelerator, which includes RFQ, DTL, Spoke cavities and medium and high beta cavities. Each

cavity will have a separate klystron, a topology which implies the use of a separate LLRF system for

each cavity – klystron pair (from now on referred to as RF cell). The system will be responsible for

maintaining the phase and amplitude stability of the field in that particular cavity, which will be achieved

by monitoring the current state of the RF cell and providing a driving signal for the klystron.

At the core of the LLRF system will be a LLRF controller board that will use a combination of feedback

and feedforward to compensate for field perturbations such as Lorentz force detuning, microphonics,

bunch charge fluctuations, etc. Each of the feedback and feedforward will be responsible for a different

type of perturbations; FF will try to compensate for repetitive (occurring on pulse to pulse bases), and

FB for random errors.

The LLRF controllers will be implemented on the same hardware for all the RF cells along the

accelerator.

In addition to field control, the LLRF system will also be included in cavity resonance control or

frequency tuning which will be done in two steps – coarse frequency tuning with stepper motors and

fine tuning with piezo motors. None of the mentioned systems exists yet.

2.1 Overview of Hardware and Software Components

General overview of software and hardware components of the LLRF system is depicted on Figure 1.

Hardware – the LLRF controller board – is represented by block 3 and will provide generic digitizer

interface (3.1) alongside custom, LLRF specific firmware (3.2). The software part will be responsible

for integration of the board into the ICS and will cover blocks 4, 5, 6, 10 and 11.

The LLRF controller board will be implemented on the same hardware for all the RF cells along the

accelerator. The controller board is realized on a Struck SIS8300L digitizer board [1]. This as an AMC

compliant to the MTCA.4 standard, which serves as the digital processing part of the LLRF. All the

digital processing and control logic is realized on the on-board FPGA, by extending the generic Struck

digitizer functionality. The analogue front end is realized on the RTM and can be different. The choice

of the RTM will depend on more factors, the more obvious one of them being the RF frequency.

Currently there are three types of RTMs being used during development SIS8900 [2], DWC8VM1 [3]

and DS8VM1 [no manual yet]

Module Technical Documentation

Document Number

Date 20 April 2015

8(72)

Figure 1 LLRF software and hardware components and their interactions to other parts of ICS (timing system,

MPS). The software part of LLRF system has to cover blocks 4, 5, 6, 10 and 11. Block 3 represents

the LLRF controller board.

Module Technical Documentation

Document Number

Date 20 April 2015

9(72)

2.2 Hardware Operation

In order to define the software architecture, some knowledge of hardware operation is needed. Figure 2

presents a LLRF control loop of one RF cell.

Figure 2 represents LLRF control loop an input signals for the LLRF controller board (labelled as LLRF system).

Figure was taken from [1].

The PI controller is realized on the FPGA of the SIS8300L [1] digitizer board, and the 10 input signals

arrive to the board over an RTM, connected to the board. The monitoring and storing part on Figure 2

represents the software – the scope of this document – while the Motion control part is not yet realized.

The blue components are out of scope of LLRF as is the Master oscillator, which provides the RF

reference.

The LLRF controller board takes 10 analogue inputs (Figure 2, Table 1):

AI Channel Number Signal

1 Cavity probe

2 LLRF controller output (read back)

3 Pre-amplifier output

4 Klystron output

5 Circulator reflected signal

6 Cavity drive signal

7 Cavity reflected signal

8 Master oscillator

LLRF system:
PI-controller

Master Oscillator

Phase Reference Clk 352.21 MHz

Klystron
Pre-
Amp

Load

Cavity

Circulator

Klystron
modulator

Power Grid

4 5

1

3 6 7

9

10

2

8

I

Pz Ctrl
fine grain tuning

Motor Ctrl
coarse grain tuning

Pz

M

LLRF system:
Motion control

LLRF system:
Monitoring & Storing

1 … 10

Warning/Errors

U

Module Technical Documentation

Document Number

Date 20 April 2015

10(72)

9 Klystron modulator U

10 Klystron modulator I

Table 1 List of LLRF controller board AI signals. At this point in time, the development version does not yet

include all the signals. See APPENDIX: Current Development System.

that represent the current state of the RF cell. The signals serve as input for the LLRF control loop and

get processed by an FPGA located on the Struck SIS8300L AMC (LLRF controller board). Result of

processing are two analogue signals (phase and amplitude) used to drive the klystron.

In addition to 10 AI channels, the FPGA also provides two virtual channels, corresponding to PI error

for magnitude and angle controller. The term virtual channel is used for the channels that for all software

purposes behave like analogue input channels but rather than belonging to a direct physical input on the

RTM, they are a result of some processing done by the controller. From the software point of view they

are just waveforms stored in controller memory, which makes the interface to them undistinguishable

from a physical data channel.

Main logic of the LLRF system is implemented on the LLRF controller board that processes the input

in several functional blocks:

1. PI regulator,

2. Feed Forward correction (FF),

3. Klystron linearization block,

4. High Voltage Feed forward (HV FF),

5. Amplitude Limiter

Table 2: FPGA Processing Blocks. At this point in time, the development version does not include all the blocks.

See APPENDIX: Current Development System.

Each of the blocks requires separate configuration which can be specific to an RF cell. The configuration

is thus not provided by hardware, but needs to be set trough software by user. Having configurable

blocks is just one of the features that allow for the use of same LLRF controller boards throughout the

accelerator as mentioned in 1.

2.3 Software Operation

The software part of the LLRF control system is responsible for integrating the LLRF controller board

into the ICS. It needs to provide a configuration for each of the HW functional blocks, readback of HW

status and run the Learning Feed Forward algorithm (LFF). The algorithm is not a part of CS integration

and is thus out of scope of this document. Software blocks, along with systems they connect to, are

represented on Figure 1.

The larger part of SW responsibility is thus providing a communication between the user and the HW.

HW status needs to be continuously updated (read from the LLRF controller) and provided to the user.

This includes providing the user with access to all the AI signals listed in Table 1 and PI error as well

Module Technical Documentation

Document Number

Date 20 April 2015

11(72)

as read back of current configuration, represented in Table 2. In the other direction, from user to HW,

the data is sent on demand rather than continuously.

2.3.1 Control Tables

The LLRF controller will require several control tables during operation, they are listed in Table 3:

1. Set Point table (SP)

2. Feed Forward table (FF)

3. Feed Forward Correction Table (FF_CORR), the result of LFF (see 3.4.1.10)

4. Klystron linearization table

5. High Voltage Feed forward table (HV FF)

Table 3 List of LLRF controller control tables, see also Table 2.

Control tables 4 and 5 can be directly mapped to FPGA functional blocks 3 and 4 (Table 3), while

control tables 2 and 3 together constitute the configuration of FF functional block 2. Control table 1

represents the desired phase/amplitude (I/Q) of the field during ramp up phase.

There is a big conceptual difference between the tables 1 - 3 and tables 4 - 5. The last two tables

compensate for non-ideal behaviour of physical LLRF components (nonlinear behaviour of the klystron

and ripple and droop from the modulator output), while tables 1 – 3 concern themselves with the RF

field. The modulator and klystron get calibrated during the commissioning phase, so the tables 4 and 5

remain constant during operation. This however, is not the case with tables 1 – 3. The three tables are

responsible for RF field control and can change on pulse-to-pulse basis.

The method for generation of control tables is not yet defined, some comments on this can be found in

the APPENDIX: Control Table Generation.

Module Technical Documentation

Document Number

Date 20 April 2015

12(72)

2.3.2 Control System State Machine

2.3.2.1 Hardware State Machine

Figure 3 Hardware state machine

The firmware has its own sate machine (depicted on Figure 3) that is tightly linked to three cavity states

– prepare for beam, beam and no beam. These states are defined with 3 timing events plus one PMS

event, which is why the LLRF board will need 4 trigger inputs, each for one timing event:

Event Event Source Software Interrupt

PULSE_COMMING Timing System none

PULSE_START Timing System none

PULSE_END Timing System
yes (after controller finishes and goes to

IDLE)

PMS PMS?? yes

Table 4 Timing events relevant for the operation of the LLRF system.

PMS event gets emitted only in case of machine error, but the other three events are emitted for every

Module Technical Documentation

Document Number

Date 20 April 2015

13(72)

pulse. They will always have to be present during normal operation. The PULSE_COMMING event

will tell the LLRF when to start ramping up (playing the SP table), PULSE_START will tell the LLRF

to hold the field (play the FF table) and PULSE_END will tell it to turn the field off (or ramp down).

Events PULSE_COMMING and PULSE_END define the ACTIVE state, during which the controller

is busy with the pulse. During this phase, the control loop is running and signals are being sampled and

stored into board memory (storage is optional and set by NSAMPLES parameter, sampling and

processing of the signal is not – see 0).

2.3.2.2 Software State Machine

The software state machine is realized on the EPICS level and is a trimmed version of the hardware state

machine, meaning that it has less states. It groups all the states where the LLRF is operational (green

area on Figure 4) into a single state called ON, which basically indicates that the controller is running.

The INIT and PMS states are mapped to corresponding hardware states. In addition to these three, the

software state machine also defines two additional states – ERROR and OFF. The detailed description

of the states and their transitions can be found in 3.3.4.1.

Software will only access the board during the IDLE phase (restriction will be enforced at EPICS level),

where it has full read and write access to registers and memory. To inform the SW when IDLE state

begins, the controller will emit a PULSE_DONE interrupt when transition from PULSE_END to IDLE

state occurs.

Upon receiving the PULSE_DONE interrupt, the SW will know that the controller is done with the

pulse. It should than fetch the ADC (Table 1) and internal signal samples (PI error) from the controller

memory and make the data from the past pulse (=sampled during ACTIVE phase) available to the user.

After this, the SW write the new control tables to controller memory and perform any parameter setup

that needs to be done before the next pulse arrives. When finished with setup, the SW will arm the board,

so that it will start waiting for the next PULSE_COMMING trigger.

1

ON

Read pulse data,
Write new values

Wait for pulse Done,
Accept new values

INIT

ERR
PMS interrupt or
Communication Error

Review
parameters

PULSE
DONE

Pulse
Coming,

Start, End

OFF

Figure 4: Software state machine.

Module Technical Documentation

Document Number

Date 20 April 2015

14(72)

3 ARCHITECTURE

Integration of the LLRF controller board into the ICS will be done in several blocks, as depicted in

Figure 1. At the top level there is an Expert Screen (blocks 10 and 11 on Figure 1) that connects to the

EPICS database (block 6 on Figure 1). The two blocks provide the user with a functionally

sensible/hardware independent overview of the LLRF system, and enable access to the LLRF controller

board from GUI or another CA client. Integration of card into EPICS is done through device support

with the help of NDS framework. NDS (block 5 on Figure 1) provides communication between EPICS

database and user-space API (block 4 on Figure 18) and is responsible for board configuration and

tracking of the controller state. The two lowest lying blocks, kernel module and user-space library, are

the only two layers that are aware of actual hardware specific implementation (such as register map).

3.1 Kernel Module

Kernel module represents the lowest lying SW layer and has direct access to HW registers. Its

responsibility is to hold a list of all attached boards, to provide a register map, through which the HW

registers are accessed from SW and handle DMA transfers to and from the board.

Since the layer provides raw access to HW registers, intimate knowledge of the LLRF controller register

map is required to access the layer directly. To hide this, a user-space library is provided, which exports

LLRF controller functionality in terms of descriptive function calls. In normal operation applications

than never accesses the kernel module directly, but use the user-space library instead.

3.1.1 Implementation

A kernel module that handles DMA transfers, mapping of board registers and access to the board trough

standard dev interface was already developed as part of support for generic Stuck SIS8300 firmware [2].

The existing module covers all the functionality and can be reused as-is.

3.2 User-space Library

The goal of user-space library is to hide the HW specific implementation by exporting an API that covers

all the functionality provided by the controller board. The LLRF addition to the generic sis8300 user

space library is stateless, meaning that it does not store any data but consists solely of function calls and

structure definitions. None of the parameters, settings or data tables that are already stored in board’s

memory or registers are duplicated here.

The user space API provides communication between the kernel module and top level applications. In

the case of LLRF controller this “application” will be the NDS, but there are no actual restraints to using

the user-space API from other (not EPICS related) applications.

3.2.1 Implementation

Since the functionality of generic Struck firmware is already supported by [4], the LLRF specific

firmware support will be added as a separate library that will depend on the generic one. An application

that will want to use the LLRF specific functionality will thus have to include both libraries.

3.2.2 Exported interface

Exported interface is an API that covers the functionality of the LLRF controller [4]. Generic Struck

Module Technical Documentation

Document Number

Date 20 April 2015

15(72)

firmware for the SIS8300L digitizer is not included in support but provided by a separate library.

3.2.2.1 Conversion to and from device data format

For non-integer parameters, the board uses fixed point representation. The user space library provides a

function to convert to/from double to these fixed number representations. This is hidden from the library

user, since parameters are set through a series of exported functions. The fixed point is specified in the

form of

 Signed(intiger bits, fractions bits) or

 Unsigned(initiger bits, fractional bits)

for every parameter separately (see [4]).

What is not hidden from the library user are PI error and FF and SP tables. All of them are stored in the

memory as 32 bit wide samples. One sample contains information about angle and magnitude and a

function is provided to either split a raw sample to angle and magnitude or to join the angle and

magnitude into a 32 bit wide raw sample.

3.2.2.2 Memory map

Custom logic requires a special memory map. This includes setting the addresses for storing PI Error,

SP and FF tables. User space library provides a function that sets this addresses based on the number of

pulse types and maximum size for each of the SP and FF tables and PI error. The maximum allowed

sizes are obtained from board registers.

Since the generic sis8300 library expects the ADC data to be stored at the beginning of the memory, this

function also makes sure that the memory reserved for the custom logic is reserved at the end. This

allows the reuse of generic functions for reading and memory setup for the ADC sampling.

This function should always be called when the board is powered on, or when a software reset is

executed, because this resets all custom (LLRF specific) settings.

3.2.2.3 Cavity Signal

For the cavity signal, a read-only value is provided by the controller, which specifies the number of

samples taken during active phase.

3.2.2.4 PI Error

Custom LLRF firmware provides an additional internal signal, which does not correspond to any of the

physical AI channels, but represents the PI error. The difference in interface to this channel with respect

to generic ADC channels is that there is no nsamples setting for PI error. Value for nsamples is provided

as a read-only parameter after each pulse.

The library also provides a function to read the raw (in fixed point format, where PI error and magnitude

waveforms are interleaved, see 3.2.2.1) PI Error values from controller memory.

3.2.2.5 Control Tables

A part of board memory is reserved for storing control tables (SP and FF), one for every pulse type. The

interface to Control Tables is much the same as for a normal I/O channel, where pulse type corresponds

Module Technical Documentation

Document Number

Date 20 April 2015

16(72)

to channel number. The user-space library provides functions to write or read the raw table for the

current pulse type or set the number of samples in the control tables belonging to current pulse type.

When writing a table, the library only checks if pulse type is out of range. Other than this, it does not

perform any checks on data validity but simply copies a block specified by nsamples to board memory.

It is up to the method calling the function to make sure that the content of tables is correct (also see

3.2.2.1).

3.2.2.6 Signal Monitoring

The controller allows for setup of min and max limit for 8 channels (Also see APPENDIX: Current

Development System). ADC Channels 0 and 1 represent the cavity and reference input respectively, and

do not have signal monitoring functionality. Signal monitoring setup allows the selection of signal type

(either AC or DC) and a threshold value. User can than define on what conditions an alarm should be

raised and what should the action on alarm be.

NOTE: One of possible actions of signal monitoring is to trigger interlock action is set to trigger

interlock, than first harlink output will go high.

3.2.2.7 Trigger Setup

As already explained in 2.22.2, the LLRF doesn’t behave as a generic DAQ card but needs 4 specific

triggers to function (Table 4). Each of this triggers must be connected to a separate trigger line, which

is why firmware offers 3 different trigger setups. Each of the setups define which trigger line represents

what event, where the trigger line for PMS is common to all the setups.

3.2.2.8 Interlock

Controller provides 4 different types of interlock conditions on harlink inputs 0 – 3. In addition to generic

options to enable external trigger on rising or falling edge, a high and low level condition is also

implemented in the custom logic.

3.2.2.9 Special Operating Modes

The LLRF controller board can function in several operating modes [4]. Each of this modes must be set

up and can also be operated in CW mode. Both are provided for in the library, CW mode can be managed

with software triggers, and is explained in on the OPI (see http 1 user manual)

3.2.3 Generic sis8300 interface and its altered functionality in LLRF context

Some of the generic firmware functionality is altered when using the board with custom LLRF firmware.

This normally affects some of the functions provided in the generic sis8300 user space library. The

affected functions are listed in Table 5.

Generic Function LLRF context

Arm the device After each PULSE_DONE interrupt, the board has to be rearmed.

Disarm the device Has no effect when done through software.

Module Technical Documentation

Document Number

Date 20 April 2015

17(72)

Pretrigger On generic Struck FW there is an option to set pretrigger – samples to acquire

before trigger. This functionality is no longer be available with LLRF custom

FW. This setting will be ignored.

ADC nsamples On generic Struck FW there is an option to specify the number of samples that

have to be acquired during acquisition.

The LLRF FW is designed so that this setting only effects the amount of data

written to RAM that can be readout by the user. The whole LLRF FPGA

processing chain is ignorant of the setting, ADCs run constantly and the PI

controller always gets input. (If this was not the case, the correct setting of

NSAMPLES would be crucial, since PI needs to obtain current state of the

LLRF system in order to work properly).

Enable acquisition

for ADC channel

(ADC channel mask)

All the ADC channels with connected signals have to be enabled while

controller is running (see also APPENDIX: Current Development System).

Disabling a channel would cause the controller to receive only zeroes for that

input and thus improper operation.

! IMPORTAINT: If The channel 0 that requires cavity input is not enabled,

the control loop will not start. This channel should always be enabled.

AO Channels The output of the board running custom LLRF FW is set by the FPGA and is

used to drive the klystron. The applications should not use the write AO

functions from generic FW.

DAC Setup The board uses DAC output to drive the klystron. The generic

DAC_CONTROL_REGISTER should not be touched directly. This setup

should be done through the provided user-space library function.

ADC Setup ADC tap delay needs to be configured when the board is started. This is done

through a provided user space library function.

DAQ Done interrupt This interrupt is no longer in use and has been replaced by PULSE_DONE

interrupt. User should not depend on this interrupt.

UPDATE: although the interrupt can still be found in the Struck

documentation, it is no longer connected.

Trigger setup All the generic Trigger setup has no meaning with LLRF specific FW. The

controller offers a custom register with 2 available trigger setups.

Trigger settings in registers: LVDS_IO_CONTROL_REG and

SAMPLE_CONTROL_REG are ignored

Harlink Input Harlink inputs, controlled in HARLINK_IN_OUT_CONTROL_REG are

used to setup the interlock condition.

Module Technical Documentation

Document Number

Date 20 April 2015

18(72)

Software Interrupt Custom logic offers two software interrupts, which are connected to the user

interrupt line provided by generic struck FW. The two interrupts are PMS and

PULSE_DONE. The reason for the interrupt can be read out from a custom

register (GOP, see [4]).

Table 5: Generic FW functions and their meaning in LLRF context

3.3 EPICS Device Support - NDS

EPICS device support module is responsible for integrating the card into EPICS and providing

communication between the user-space API and EPICS database. It is realised with the help of NDS

Framework [5]. Since NDS framework is focused on DAQ cards, bare NDS functionality had to be

extended to support additional control options required by LLRF controller board.

3.3.1 Responsibilities

3.3.1.1 Pulse Type

The accelerator will have several possible pulse types/beam modes (not defined yet). Each of these pulse

types could be different (length of the pulse, power, etc.) which is why each of them will require a

separate SP and FF table. Distinction between different pulse types is one of the points where the SP

and FF tables separate themselves from other control tables in Table 3.

It will be the responsibility of NDS layer to make sure that the pulse type is set up (meaning that the SP

and FF table for the PT are loaded into memory), before allowing the user to select the PT.

3.3.1.2 Controller setup

The device support should provide access to all the settings that are needed by the controller, which can

roughly be separated into 8 groups:

1. Non IQ sampling Setup

2. Vector Modulator setup

3. Modulator Ripple Filter setup

4. PI Controller Setup

5. Control Table setup

6. Data Acquisition Setup

7. Signal Monitoring Setup

8. Interlock and Trigger Setup

It will also perform some basic sanity checks on validity of those parameters.

3.3.1.3 PI Error RMS calculation and statistics display

Option to track the cumulative average for PI I and PI Q error since last time a controller setting was

changed is also provided. Tracking also provides an option to ignore samples at the end of the pulse, or

reset the RMS calculation on request.

Module Technical Documentation

Document Number

Date 20 April 2015

19(72)

3.3.1.4 Control Tables (FF and SP table)

Since the user space library writes the given SP or FF table to board memory without question, it will

be in NDS responsibility to make sure that the data written is of correct size (as specified in

TABLE_SIZE register) and format. It is not, however, responsible for the content of the tables.

During PULSE_ACTIVE state, the controller will than play out the tables. If the table does not extend

through the whole interval between PULSE_COMMING and PULSE_START for SP table, or between

PULSE_START and PULSE_END for FF table, the controller will hold the last value in the table until

the interval is finished [4].

3.3.2 Implementation

Since the generic Struck firmware is already supported in NDS [5] with a set of C++ Classes [6], the

LLRF specific functionality is added by extending these Classes and adding new ones where necessary.

All the classes and their additions with respect to generic EPICS module are described in this section.

A Device in NDS is modelled with Device, Channel Group and Channel Classes. The Struck SIS8300L

LLRF Device has four channel groups with the following channels:

 Analog Input Channel Group (AI CG)

o 10 Analog Input Channels (AI CH)

 Control Table Channel Group – SP tables (CT CG)

o One Control Table Channel for each pulse type (CT CH)

o One Control Table Channel for Special Operating Modes (CT SO)

 Control Table Channel Group – FF tables (CT CG)

o One Control Table channel for each pulse type (CT CH)

o One Control Table Channel for Special Operating Modes (CT SO)

 Controller Channel Group Class (CTRL CG)

o 2 PI Channels (PI CH)

 PI I Channel (PI I CH)

 PI Q Channel (PI Q CH)

o IQ Channel (IQ CH)

o VM Channel (VM CH)

o 1 Modulator Ripple Filter Channel (MR CH)

o 4 Interlock Channels (ILOCK CH), one for every HARLINK input

 Signal Monitor Channel Group (SIGMON CG)

o 10 Channels, each corresponding to an AI channel (SIGMON CH)

The physical AI channels map directly to AI Input channels, all other channels are virtual. The Control

Table Channel group has two instances, one taking care of SP and the other of FF tables. Each Control

table channel number maps directly to pulse type. The Controller Channel Group joins together all the

parameters that are required to set up the custom part of the LLRF, except for Signal monitoring which

is moved to its own CG. IQ, VM, MR and ILOCK CHs channels only hold parameter values, while both

PI Channels act as data input channels that provide readout of the PI error for the previous pulse and

setup of PI controller parameters.

The Device class is responsible for following the controller status and is in control of all Channel Group

transitions. When the Device transitions to ON it starts waiting for PULSE_DONE interrupt and sends

all Channel Groups into PROCESSING state. When the interrupt is received, the Device sends all the

Module Technical Documentation

Document Number

Date 20 April 2015

20(72)

Channel Groups into DISABLED state. When a Channel Group or Channel within the group leaves the

processing state, it fetches data belonging to the pulse that just passed, and when it enters the disabled

state it writes the new values to the controller.

During PROCESSING state CGs and CHs are accepting new values for controller parameters. The

values are than taken into account with the next pulse, e.g. after the device is armed the next time. Each

parameter or setting has a corresponding readback value, which gets updated when the parameter is

actually written to the hardware. The readback thus provides information on the exact time the value

was written to the controller.

If the setting is written to a shadow register (see [4] for the shadow register list), the controller takes the

new value into account after an explicit call from software to update parameters. A call for update

parameters happens before every arm of the board (if the parameters changed) and has its own

corresponding readback which provides the exact time this was written to hardware. This allows one to

track what parameters were used for each specific pulse.

3.3.3 Driver Initialization Parameters

In addition to standard parameters required by the ndsCreateDevice iocsh function [5], the driver

requires two LLRF specific initialization parameters:

Parameter Meaning

FILE Specifies the Linux device node corresponding to the selected Struck

SIS8300L board.

NUM_PULSE_TYPES Number of pulse types that the device has to support. Tells the driver how

many CT CHs to create in each CT CG.

Table 6: Driver initialization parameters

3.3.4 Exported interface

The interface exported by the NDS layer is a set of asynReasons, belonging to a Channel or a Channel

Group. This chapter gives an overview of C++ Classes that are included in the EPICS module.

3.3.4.1 LLRF Device (sis8300llrfDevice Class)

The sis8300llrfDevice Class derives from sis8300Device Class [6] to provide LLRF specific

functionality. The Class is responsible for card registration and CG management. It is also in control of

the software state machine by implementing the NDS Device states defined in Table 8 and transitions

between them (Table 9).

The lifecycle of the device starts with its creation at IOC initialization. After IOC initialization, the

device is in OFF state and the card not yet registered with the user-space library. The Device

automatically transitions to INIT state if its Enabled property is set, or waits for INIT message from the

user. The condition for successful transition is that the NUM_PULSE_TYPES ≥ 0, that the selected card

(the device node via the FILE initialization parameter) is successfully opened and that the information

about the device serial number and firmware version is read from the card successfully. Upon a

Module Technical Documentation

Document Number

Date 20 April 2015

21(72)

successful transition all the CGs are passed the device context (they in turn pass it on to their CHs) so

that they are able to interact with the card. If the card registration fails, the Device goes into ERROR

state.

When the Device enters INIT state, it first initializes the card. This includes:

 Setup the memory map

 Setup DAC

 Setup the clock source

It than calls initialize on all CGs (they in turn call initialize on all CHs), so that initial configuration can

be read from device registers, and starts waiting for ON request from the user. At this point the user can

configure the controller by specifying DAQ options, pulse type, various PI controller parameters, SP

and FF tables.

When the device receives an ON request, it first checks if the selected pulse type has been setup correctly

(SP and FF tables are set). If transition is successful the Device requests that all CGs write their data to

the controller, sends an INIT DONE flag to the board and arms the controller. After this it sends CGs to

PROCESSING state (They in turn send their CHs to PROCESSING state) and starts the pulse setup task

which waits for PULSE_DONE or PMS interrupt from the board.

The pulse setup task is responsible for monitoring the controller state and controlling when CGs will

go to PROCESSING or DISABLED. Unless an error occurs, or it is interrupted by the user the task will

keep on repeating the following:

1. Wait for a software interrupt from the board

2. Receive interrupt,

a. If it was PMS go to ERROR state and stop the task

b. If it was PULSE_DONE go to 3

3. Send all CGs to Disabled state

a. When they leave PROCESSING, they will read the past pulse data from the controller

b. When they enter DISABLED state they will write new user settings to the controller

and do callbacks for any settings that have changed – callbacks will update the setting

reaback values. The readback values will thus always reflect the current hardware

settings

4. Check with CGs if any of the parameters have changed and determine the update reason for the

board

5. Check if new pulse type was selected, if yes, check if the selected type is set up. If yes, write

the new pulse id to the card

6. Send all CGs to PROCESSING state

7. Clear latched interrupts for PI overflow and VM magnitude limiter

8. Arm the board

9. Go to 1

Information that is included in the past pulse data are values that are expected to change on pulse-to-

pulse basis. They are listed in Table 7.

Data NDS Class

Module Technical Documentation

Document Number

Date 20 April 2015

22(72)

PI Error waveforms (2x) PI CH

Calculated PI Error RMS (2x) PI CH

PI Overflow Status (2x) PI CH

ADC waveform data (10x) AI CH

Number of samples acquired for PI err during ramp-up and active phase CTRL CG

Total number of samples acquired during ramp-up plus active phase for cavity

signal

CTRL CG

Total number of samples acquired during ramp-up plus active phase for PI error CTRL CG

Vector Modulator magnitude limiter status VM CH

ILOCK Status (4x) ILOCK CH

Signal Monitor ILOCK, PMS and ALARM status (8x) SIGMON CH

Maximum or minimum amplitude on a specific channel and current amplitude on

that same channel

SIGMON CH

Table 7: Parameters that change on pulse to pulse basis and are read out after every PULSE_DONE interrupt from

the device.

The sis8300llrf Device Class implements the following NDS Device states:

State Description

OFF The device file is not opened, and the controller cannot be accessed. In this

state, the board can be replaced, hot-plugged or flashed with new firmware.

INIT The device file is opened. All the groups have device context. The controller

is IDLE. In this state it is possible to change clock settings.

ON The controller is active and the control loop is running. Pulse setup task is

running.

RESET This is a transition state where a SW reset of custom logic is executed. After

the reset the device can be put into INIT or OFF state.

Module Technical Documentation

Document Number

Date 20 April 2015

23(72)

ERROR A PMS interrupt was received, or there was a problem in communication with

the device.

Table 8: Device NDS states

And transitions between them:

Source State Destination State Description

OFF INIT Try to open the device and read firmware version and

serial number. Pass the device context to all the CGs

and CHs and initialize the CGs and CHs.

OFF ERROR This transition occurs if the device cannot be opened

or if the device is in PMS state when it is turned on.

INIT ON Check if the selected pulse type has FF and SP tables

set. If yes, indicate INIT DONE to the device and

arm it. Start the pulse setup task, that will wait for

PMS or PULSE_DONE interrupt (see Table 4).

This mode is also used for device setup.

ON ERROR The transition occurs when a PMS interrupt is

received or if there is a problem in communication

with the device. Stop waiting for PULSE_DONE and

PMS interrupt.

Any except OFF RESET Issue a software reset of custom logic. Send all the

LLRF Channel groups to RESET.

RESET INIT The device waits in RESET state (for clarity) and has

to be manually moved out of it.

Any state except ON OFF When device transitions to OFF state file descriptor

is released.

Table 9: Device state transitions

The Device Class implements the following parameters:

Asyn Reason Asyn Interface Description

Module Technical Documentation

Document Number

Date 20 April 2015

24(72)

State asynInt32 See [5]

Command asynOctetWrite Supported messages are “ON”, “RESET”, “OFF”

and “INIT”

Enabled asynInt32 See [5]

Model asynOctetRead See [5]

Serial asynOctetRead See [5]

HardwareRevision asynOctetRead See [5]

FirmwareRevision asynOctetRead See [5]

SoftwareRevision asynOctetRead See [5]

OperatingMode asynInt32 Used to select the operating mode of the controller.

ForceTrigger asynInt32 To be used for special operating modes and during

setup to force a specific FSM state or manual

parameter update.

PulseType asynInt32 Current Pulse Type. Max allowed value is defined at

iocInit.

PulseDoneCount asynInt32 Number of received pulse since the last INIT to ON

transition

PulseMissed asynInt32 Binary. Goes high if pulse count since last received

user interrupt is bigger than one.

PMSAct asynInt32 State of the PMS. Goes high if PMS interrupt was

received from the board.

UpdateReason asynInt32 Called whenever a request to the board is made to:

 Init done = 0x1,

 Take into account new parameters = 0x2

 New pulse type/update all = 0x4,

 Take into account new FF table for the

current pulse type 0x8

 Take into account new SP table for the

current pulse type 0x10

Module Technical Documentation

Document Number

Date 20 April 2015

25(72)

 Do a software reset

Arm asynInt32 Binary. Indicates when the device was armed from

software.

PulseDone asynInt32 Binary. Indicates when a PULSE_DONE interrupt

was received from the device.

Status asynInt32 Used mostly for tracking the controller state during

development, has states ARMED, PULSE_DONE,

CLEAR, PMS

SetupActive asynInt32 Binary. Used to put the controller into setup mode.

SignalActive asynInt32 Binary. Used to determine whether the controller is

currently in active state (outputting a signal). Used in

CW mode only.

Table 10: Device NDS properties

3.3.4.2 LLRF Base Channel Group (sis8300llrfChannelGroup Class)

This Channel Group Class is a base Class for all LLRF specific channel groups. It implements or

overrides the functionality of an NDS Channel Group Class. The class registers state transition handlers

that correspond to LLRF controller states and provides functions for tracking parameter changes. The

Channel Group is responsible for reporting if any changes were made on any of its channels. Tracking

parameter changes is important to determine the update reason from the pulse setup task. The Class

provides 4 virtual functions (see also [6]) that should be overridden by deriving classes:

 commitParameters: write new parameter values associated with this CG to the controller.

 readParameters: read all the current parameter values from hardware

 markAllParametersChanged: Mark all the parameters this CG is responsible as changed. Call

markAllParametersChanged on all channels. This will force a rewrite of all the parameters when

a next call to commitParameters occurs.

 initialize: Used for any initialization that requires access to the hardware and can thus not be

done in IOC INIT phase. The default will also call initialize on all CHs. Default will call

markAllParametersChanged and commitParameters.

The following state handlers are registered within the group:

State Handler Description

ENTER

PROCESSING

Set updateReason to 0

Module Technical Documentation

Document Number

Date 20 April 2015

26(72)

ENTER DISABLED The following actions are performed in the order they are listed:

1. Check if CG is in IOC_INITIALIZATION state and return if it is.

2. Check if CG came from RESETTING state, send all CHs to

DISABLED.

3. Call commitParameters.

ENTER RESET There are two state handles taking care of this transition. The following

actions are performed in the order they are listed:

1. Send all channels to RESETTING STATE.

2. Call readParameters to get the new values from hardware (after reset

was executed).

3. Call markAllParametersChanged to force a rewrite of the values to

hardware when returning to INIT state.

Table 11: LLRF Channel Group State handlers

The LLRF Channel Group Class implements the following configuration parameters, specified by NDS:

Asyn Reason Asyn Interface Description

State asynInt32 See [5]

Enable asynInt32 Overridden. CG cannot be disabled.

Command asynOctetWrite,

asynOctetRead

“START” and “STOP” messages will return an

error, because state transitions are controlled by the

Device Class, based on software interrupts, not the

user.

ChannelDataReady asynInt32 Signals when all data in channel have been updated.

Table 12: LLRF Channel Group NDS properties

3.3.4.3 LLRF Base Channel (sis8300llrfChannel Class)

This is a LLRF specific NDS ADIOChannel Class [5], from which all LLRF specific channels are

derived. It provides commonly used functions and registers state handlers, relevant in LLRF operation.

The core functions of this class are much the same as for LLRF CG Class and should be overridden by

deriving Classes where necessary:

 commitParameters: If the CG is not in PROCESSING, than write new values for all the

parameters that have changed to hardware and update the CG’s updateReason accordingly.

Derived classes should override this function when necessary to write the parameter values

corresponding to the specific channel

Module Technical Documentation

Document Number

Date 20 April 2015

27(72)

 readParameters: Read current parameter values from hardware

 markAllParametersChanged: Mark all parameters in the CH as changed. This will cause them

to be recommitted to hardware.

 initialize: The function is intended for any type of initialization that requires access to hardware

and can thus not be done before device enters the INIT state. Default function just calls

markAllParametersChanged and commitParameters.

Table 13 gives a detailed description of state transitions, which are all hooked on the PULSE_DONE

interrupt:

State handler Description

ENTER DISABLED Call commitParameters unless the CH is in IOC_INITIALIZATION state.

ENTER RESET Call readParameters and markAllParametersChanged.

Table 13: LLRF Channel State handlers

The LLRF Channel Class implements the following configuration parameters specified by NDS:

Asyn Reason Asyn Interface Description

State asynInt32 See [5]

Enabled asynInt32 This property is read only. All channels used for

LLRF specific data and settings are always enabled

Command asynOctetWrite,

asynOctetRead

“START” and “STOP” messages are overridden in

this class, because state transitions are controlled by

the Device Class and based on software interrupts,

not the user.

Table 14: LLRF Channel NDS properties

3.3.4.4 LLRF Control Table Channel Group (sis8300llrfControlTableChannelGroup Class)

The LLRF Control Table Channel Group Class derives from LLRF Base Channel Group

(sis8300llrfChannelGroup Class. A channel in this groups acts as a normal I/O channel. The channels

are grouped into Control Table Channel Group Class based on the table type, which can be FF or SP.

When the Control Table Channel Group initializes, it gets the maximum number of samples supported

by the FW from device registers. At the time of CG creation, each group registers as many CHs as there

are defined pulse types (specified by NUM_PULSE_TYPES parameter, Table 6).

In addition to inheriting NDS properties from Table 12, the class also implements the following

additional properties:

Module Technical Documentation

Document Number

Date 20 April 2015

28(72)

Asyn Reason Asyn Interface Description

SamplesCount asynInt32 Read only. Gives maximum allowed number of

elements in a control table. Value is read from device

registers when the device is turned on and is

currently (consult [4] for up to date values)

0x01000 for SP tables

0x10000 for FF tables

MaxNelm asyInt32 Maximum allowed elements in the FF or SP table.

The value is obtained directly from hardware at

transition to INIT state and does not change during

operation.

FFTableSpeed asynInt32 Feed forward table speed represents the number of

clock cycles before next FF value is added to the PI

input.

In the interval [1,15] or every time a new PI sample

is available

The setting is only available for FF tables, using it

for SP tables will return an error.

Table 15: Control Table Channel Group NDS properties

3.3.4.5 LLRF Control Table Channel (sis8300llrfControlTableChannel Class)

The Control Table Channel Class derives from LLRF Base Channel (sis8300llrfChannel Class). Each

instance of Control Table Channel represents a pulse type corresponding to that channel number. The

control table channel has two associated tables, I and Q.

Before the table is sent to hardware memory, both I and Q table are joined into a single table which is

what actually gets written to the hardware. If I and Q table are not of the same size, the shorter table is

filled up by the value of last element to get the same length for both tables. This is a viable solution,

since the controller holds the last value until the end of pulse phase anyway [4].

The number of elements in the array is not directly settable. It gets set when the tables are joined and is

the same as the number of elements in the larger table. The value of SamplesCount is used by the CG,

to determine the size of the currently used Control Table and send it to the controller.

In addition to inheriting NDS properties from Table 14, the Class also defines the following new ones:

Asyn Reason Asyn Interface Description

Module Technical Documentation

Document Number

Date 20 April 2015

29(72)

SamplesCount asynInt32 Read-only. Number of samples equals number of

elements in the larger of AngleTable and

MagnitudeTable.

ITable asynFloat32Array I part of the Control Table,

QTable asynFloat32Array Q part of the Control Table

RawTable asynInt32Array Raw table that contains 32 bit samples, containing

both I and Q part. Basically the I and Q tables

converted to a Signed(1,15) fixed point

representation and interleaved, where table I is at

offset 0.

FFTableMode asynInt32 FF Table mode, can be hold last or circular. Circular

is to be used with special operating modes (see [4]).

The reason can only be used with FF table types.

WriteTable asynInt32 Trigger reason to write specified tables to hardware.

Table 16: Control Table Channel NDS properties

3.3.4.6 LLRF Special Operation Control Table Channel

(sis8300llrfControlTableChannelSpecOp Class)

This Class derives from LLRF Control Table Channel (sis8300llrfControlTableChannel Class) and

provides settings for special operation modes (see [4]). It (ab)uses the I and Q table buffers from parent

to be used as Magnitude and Angle tables in case of Magnitude or angle Controlled Signal Generator.

In SP and FF CG, there is always one extra channel reserved at the end, which is used for special

operating modes. In addition to properties defined in Table 16, the class defines the following ones:

Asyn Reason Asyn Interface Description

SamplesCount asynInt32 Read-only. Number of samples equals number of

elements in the larger of AngleTable and

MagnitudeTable.

MagTable asynFloat32Array Magnitude part of the Control Table

AngleTable asynFloat32Array Angle part of the Control Table

Table 17: Control Table Special Operation Class NDS Properties

When using the controller in special operating modes, the mode can require either Magnitude and Angle

or I and Q table. In the channel class itself (and also on the device) there are only two buffers, which

Module Technical Documentation

Document Number

Date 20 April 2015

30(72)

can contain either MA or IQ pair. The only difference between using the MagTable and AngleTable

reasons from Table 17 and using the ITable and QTable reasons from Table 16 is the conversion of the

double values to the hardware fixed point representation. Every time a new mode is used, both tables

should be written down to avoid mixing up the two representations.

3.3.4.7 LLRF Controller Channel Group (sis8300llrfControllerChannelGroup Class)

The Controller Channel Group Class derives from LLRF Base Channel Group

(sis8300llrfChannelGroup Class. It groups together all the channels that are responsible for monitoring

and setup of the controller state.

In addition to inheriting NDS properties from Table 12, it also defines the following new ones:

Asyn Reason Asyn Interface Description

SamplesCntPIRampUp asynInt32 Read-only. Number of PI errors sampled during

ramp up phase (between PULSE-COMING and

PULSE_START triggers)

SamplesCntPIActive asynInt32 Read-only. Number of PI errors acquired during

active phase (between PULSE_START and

PULSE_END triggers)

SamplesCntPITotal asynInt32 Read-only. Number of PI errors acquired during

ramp up plus active phase (between

PULSE_COMMING and PULSE_END trigger).

SamplesCntADCTotal asynInt32 Read-only. Number of ADC samples acquired per

AI channel during ramp up and active phase

(between PULSE_COMMING and PULSE_END

OutputType asynInt32 This is used to select either PI or FF driven output.

TriggerType asynInt32 Selects which three backplane trigger lines to use

for triggering,

 MLVDS lines 0,1, 2 = 0

 MLVDS lines 4,5,6 = 1

Table 18: Controller Channel Group NDS properties

3.3.4.8 LLRF Non-IQ Sampling Channel (sis8300llrfIQSamplingChannel Class)

The sis8300llrfIQSamplingChannel Class extends the basic sis8300llrfChannel Class and defines the

following asynReasons that represent IQ sampling settings:

Module Technical Documentation

Document Number

Date 20 April 2015

31(72)

Asyn Reason Asyn Interface Description

IQCavInpDelay asynInt32 Cavity input delay. If enabled, sets number of

clock cycles to delay cavity input as: Delay =

value + 3, i.e. minimum delay is 3 CC. Used to

align Cavity and Reference input at phase

compensation. Limits are:

[0,63]

IQCavInpDelayEn asynInt32 Binary, used to enable or disable the Cavity

input delay.

Enable: 1, Disable: 0

IQAngleOffset asynFloat64 IQ sampling angle offset. Used to compensate

for different physical delays between cavity and

reference signal. Used to adjust cavity input

signal so that it is in phase with reference when

a SP with 0 angle is used. Limits are:

[-, ]

IQAngleOffsetEn asynInt32 Enable or disable the IQ angle Offset addition.

Enable: 1, Disable: 0

NearIqParamM asynInt32 Near IQ parameter M

NearIqParamN asynInt32 Near IQ parameter N

Table 19: IQ Channel NDS properties

3.3.4.9 LLRF Vector Modulator Channel (sis8300llrfVMChannel Class)

The sis8300llrfIVMChannel Class extends the basic sis8300llrfChannel Class and defines the following

asynReasons that represent Vector Modulato Settings:

Asyn Reason Asyn Interface Description

MagnitudeLimitVal asynFloat64 Set Magnitude limit value. Limits are:

[-215, 215-2-16] → [0.0, 0.999984741211]

MagnitudeLimitEnable asynInt32 Enable magnitude limiter. Limit value is

MagnitudeLimitVal

Module Technical Documentation

Document Number

Date 20 April 2015

32(72)

Enable = 1, Disable =0

MagnitudeLimitStatus asynInt32 VM Magnitude limiter status, Read-Only

1 = Active, 0 = Not active

InvertOutputI asynInt32 Invert I ouptut to compensate for Struck DAC

inversion.

Enable = 1, Disable = 0

InvertOutputQ asynInt32 Invert Q output to compensate for Struc DAC

inversion.

Enable = 1, Disable = 0

SwapIqEn asynInt32 Swap I and Q = 1, Do nothing = 0

PreDistEn asynInt32 Pre-distort input to VM.

Enable = 1, disable = 0

PreDistRC00 asynFloat64 Pre-distortion matrix, value RC00. Limits are:

[-21, 21 – 2-12] → [-2.0, 1.99975585938]

PreDistRC01 asynFloat64 Pre-distortion matrix, value RC01. Limits are:

[-21, 21 – 2-12] → [-2.0, 1.99975585938]

PreDistRC10 asynFloat64 Pre-distortion matrix, value RC10. Limits are:

[-21, 21 – 2-12] → [-2.0, 1.99975585938]

PreDistRC11 asynFloat64 Pre-distortion matrix, value RC11. Limits are:

[-21, 21 – 2-12] → [-2.0, 1.99975585938]

PreDistDCOI asynFloat64 Pre-distortion DC offset for I part. Limits are

[-20, 20 – 2-15] → [-1.0, 1.99975585938]

PreDistDCOQ asynFloat64 Pre-distortion DC offset for Q part. Limits are

[-20, 20 – 2-15] → [-1.0, 1.99975585938]

Table 20: VM Channel NDS properties

Module Technical Documentation

Document Number

Date 20 April 2015

33(72)

In addition to state transitions listed Table 13, this class defines the following state transitions:

State handler Description

LEAVE

PROCESSING

Read the Magnitude limit status

Table 21: VM Channel State Transition Handlers

3.3.4.10 LLRF Interlock Channel (sis8300llrfILOCKChannel Class)

The sis8300llrfIILOCKChannel Class extends the basic sis8300llrfChannel Class and defines the

following asynReasons that represent Interlock Channel Settings:

Asyn Reason Asyn Interface Description

getValueInt32 asynInt32 Harlink input status

High = 1, Low = 0

ILOCKCond asynInt32 Set Interlock Condition:

 DISABLED = 0,

 RISING EDGE = 1,

 FALLING EDGE = 2,

 HIGH LEVEL = 3,

 LOW LEVEL = 4

Table 22: ILOCK Channel NDS Properties

In addition to state transitions listed Table 13, this class defines the following state transitions:

State handler Description

LEAVE

PROCESSING

Read the Harlink input Status

Table 23: ILOCK Channel State Transitions

3.3.4.11 LLRF PI Channel (sis8300llrfPIChannel Class)

The LLRF PI channel Class derives from LLRF Base Channel (sis8300llrfChannel Class. In addition to

inheriting NDS properties from Table 14, it also defines additional properties that represent settings or

data for the I and Q PI controller.

Module Technical Documentation

Document Number

Date 20 April 2015

34(72)

Apart from reading and writing to hardware, this class also calculates RMS of the PI error waveform

obtained after every pulse and does a cumulative average of the value. The average is calculated from

last X pulses and gets reset whenever controller settings change. A maximum value of the RMS during

these X pulses is also stored.

Asyn Reason Asyn Interface Description

PIGainK asynFloat64 Set K gain for PI controller. Limits are:

[-28, 28-2-24] → [-128.0, 127.9999999404]

PIGainTsDivTi asynFloat64 Set Ts/Ti gain for PI controller. Limits are:

[-28, 28-2-24] → [-128.0, 127.9999999404]

PISaturationMax asynFloat64 Set Max Saturation for PI Controller. Limits are:

[-215, 215-2-16] → [-32768.0, 32767.999984741211]

PISaturationMin asynFloat64 Set Min Saturation for PI Controller. Limits are:

[-215, 215-2-16] → [-32768.0, 32767.999984741211]

PIFixedFFVal asynFloat64 Set fixed point FF value. Limits are:

[-1, 1-2-15] → [-1.0, 0.999969482422]

PIFixedFFEnable asynInt32 Use PIFixedFFVAl instead of FF table

Use fixed = 1, Use table = 0

PIFixedSPVal asynFloat64 Set fixed point SP value. Limits are:

[-1, 1-2-15] → [-1.0, 0.999969482422]

PIFixedSPEnable asynInt32 Use PIFixedSPVal instead of SP table

Use fixed = 1, Use table = 0

PIOverflowStatus asynInt32 Overflow occurred = 1, No Overflow = 0

BufferFloat32 asynFloat32ArrayIn Contains the PI error waveform from the last pulse.

RMSCurrent RMS value of the PI error during ACTIVE phase

(between PULSE_START and PULSE_END timing

triggers, see Table 4), calculated from the data

Module Technical Documentation

Document Number

Date 20 April 2015

35(72)

available through BufferFloat32

RMSSMNMIgnore asynInt32 Number of samples to ignore at the end of every

pulse when calculating the RMS

RMSAverage asynFlot64 Cumulative average of RMS values for the last X

pulses, where X can be obtained from RMSPulseCnt.

The average is reset manually, or when any of the

parameters on the device change (_UpdateReason !=

0, see 3.3.4.1).

RMSMax asynFloat64 Maximum RMS value in the last X pulses, where X

can be obtained from RMSPulseCnt. The average is

reset manually, or when any of the parameters on the

device change (_UpdateReason != 0, see 3.3.4.1).

RMSPulseCnt asynInt32 Number of pulses taken into account in the RMS

average calculation.

RMSReset asynInt32 Binary, used to manually reset the RMSAverage and

RMSMax values and start fresh with the next pulse.

RMSPulseCount will start again from 1.

Table 24: PI Channel NDS properties

In addition to state transitions listed Table 13, this class defines the following state transitions:

State handler Description

LEAVE

PROCESSING
 Read the PI Error waveform from the hardware

 Calculate the RMS during the active phase

 Calculate the new RMS cumulative average

 Check if the new RMS is bigger than current RMS max value and

store it if it is

 Check the PI overflow status

Table 25: PI Channel State Transitions

3.3.4.12 LLRF Modulator Ripple Filter Channel (sis8300llrfModRippleFiltChannel Class)

The LLRF Modulator Ripple Filter Channel Class derives from LLRF Base Channel

(sis8300llrfChannel Class. In addition to inheriting NDS properties from Table 14, it also defines

additional properties that are specific to Modulator ripple filter settings:

Asyn Reason Asyn Interface Description

Module Technical Documentation

Document Number

Date 20 April 2015

36(72)

ModRippleFilConstS asynFloat64 Modulator ripple filter constant S:

[-20, 20 - 2-31] → [-1.0, 0.999969482422]

ModRippleFilConstC asynFloat64 Modulator ripple filter constant C:

[-20, 20 - 2-31] → [-1.0, 0.999969482422]

ModRippleFilConstA asynFloat64 Modulator ripple filter constant A:

[0, 20 - 2-16] → [-1.0, 0.999984741211]

ModRippleFilStartEvnt asynInt32 Modulator ripple filter start event defines the start

of modulator ripple filter active period. Values can

be:

 PULSE_COMMING = 0,

 PULSE_START = 1

ModRippleFilStopEvnt asynInt32 Modulator ripple filter stop event defines the end

of modulator ripple filer active period. Values can

be:

 PULSE_START = 1,

 PULSE_END = 2

ModRippleFilQEn asynInt32 Binary, enable modulator ripple filter for Q part.

Values can be:

Enable = 1, Disable = 0

ModRippleFilIEn asynInt32 Binary, enable modulator ripple filter for I part.

Values can be:

Enable = 1, Disable = 0

Table 26: Modulator Ripple Filter Channel NDS Properties

3.3.4.13 LLRF Notch Filter Channel (sis8300llrfModRippleFiltChannel Class)

The LLRF Notch Filter Channel Class derives from LLRF Base Channel (sis8300llrfChannel Class. In

addition to inheriting NDS properties from Table 14, it also defines additional properties that are specific

to Notch filter settings:

Module Technical Documentation

Document Number

Date 20 April 2015

37(72)

Asyn Reason Asyn Interface Description

NotchFilConstAReal asynFloat64 Notch filter constant A real part:

[-20, 20 - 2-31] → [-1.0, 0.999969482422]

NotchFilConstAImag asynFloat64 Notch filter constant A imaginary part:

 [-20, 20 - 2-31] → [-1.0, 0.999969482422]

NotchFilConstBReal asynFloat64 Notch filter constant B real part:

[-20, 20 - 2-31] → [-1.0, 0.999969482422]

NotchFilConstBImag asynFloat64 Notch filter constant A imaginary part:

 [-20, 20 - 2-31] → [-1.0, 0.999969482422]

NotchFilEn asynInt32 Binary, enable notch filter. Values can be:

Enable = 1, Disable = 0

Table 27: Modulator Ripple Filter Channel NDS Properties

3.3.4.14 LLRF Signal Monitor Channel (sis8300llrfSignalMonitorChannel Class)

The LLRF Signal Moniotor Channel Class derives from LLRF Base Channel (sis8300llrfChannel Class.

In addition to inheriting NDS properties from Table 14, it also defines additional properties that are

specific to Signal Monitor settings:

Asyn Reason Asyn Interface Description

MagTreshold asynFloat64 Magnitude threshold determines when an alarm is

raised on this channel. It is used together with

MonitorAlarmCnd. Limits are:

[0, 20 - 2-15] → [0.0, 0.999984741211]

MonitorAlarmCnd asynInt32 Alarm condition. Alarm is raised when the ADC

signal goes:

Over Treshold=0, Below Treshold=1

Where the threshold is pecified with MagTreshold.

MonitorStartEvnt asynInt32 This event defines the start of monitor active

Module Technical Documentation

Document Number

Date 20 April 2015

38(72)

period, it can be:

 PULSE_COMMING=0,

 PULSE_START=1,

 PULSE_END=2,

 NEVER=3

And has to be before MonitorStopEvnt, which

defines the end of monitor active period.

MonitorStopEvnt asynInt32 This event defines the end of signal monitor active

period, it can be:

 PULSE_START=1,

 PULSE_END=2,

 PULSE DONE=3

And has to be after MonitorStartEvnt which

defines the start of monitor active period.

MonitorPMSEn asynInt32 Trigger PMS if Alarm is raised

Disabled=0, Enabled=1

MonitorILOCKEn aynInt32 Trigger ILOCK if Alarm is raised

Disabled=0, Enabled=1

(see also APPENDIX: Current Development

System)

SygnalTypeDC asynInt32 Set signal type, it can be:

AC=0, DC=1

MagCurrent asynFloat64 Current magnitude value on the corresponding

ADC channel

MagMinMax asynFloat64 Minimum or maximum magnitude value during

the last monitor active period (defined with

MonitorStartEvnt and MonitorStopEvnt). If

MonitorAlarmCnd is set to trigger below

threshold, this will return the mainimum

magnitude, if it is set to trigger above threshold, it

will return the maximum magnitude.

SigmonAlarm asynInt32 Binary, shows the status of alarm on this signal

monitor CH. Values are:

Module Technical Documentation

Document Number

Date 20 April 2015

39(72)

Alarm active = 1, Not active = 0

The alarm will be raised if the signal goes below or

over magnitude threshold (depending on the choice

of MonitorAlarmCnd) during the signal monitor

active period (defined with MonitorStartEvnt and

MonitorStopEvnt).

SigmonPMS asynInt32 Binary, shows the status of PMS for this signal

monitor CH. Values are:

1 = PMS active, 0 = not active

The PMS is raised if alarm is raised and if PMS

triggering is enabled for the CH (with

MonitorPMSEn).

SigmonILOCK asynInt32 Binary, shows the status of interlock on this signal

monitor CH. Values are:

Interlock active = 1, not active = 0

Interlock becomes active when alarm is raised and

if interlock is enabled for the CH (with

MonitorILOCKEn).

Table 28: NDS Signal Monitor Channel Properties

In addition to state transitions listed Table 13, this class defines the following state transitions:

State handler Description

LEAVE

PROCESSING
 Read alarm status for the channel

 Read PMS status for the channel

 Read interlock status for the channel

 Read maximum/minimum amplitude for the last pulse

 Read current magnitude value

Table 29: Singal Monitor Channel State Transitions

3.3.4.15 LLRF Analog Input Channel Group (sis8300llrfAIChannelGroup Class)

The Analog Input Channel Group Class derives from generic sis8300 AI CG Class [6]. It overrides

asynReasons that are not supported in the LLRF specific implementation. In this derived Class, the

responsibility of the AI CG for triggering the acquisition is removed, since this is in the domain of the

Device Class. It does not add any new state transitions and overrides two from the parent class (see [6]),

their actions are defined in Table 30:

Module Technical Documentation

Document Number

Date 20 April 2015

40(72)

State handler Description

ENTER

PROCESSING

Override parent to do nothing

LEAVE

PROCESSING

Override parent to do nothing

ENTER DISABLED Keep parent’s handler, that calls commitParameters

Table 30: NDS LLRF AI CG state transitions

This Class implements the following parameters:

Asyn Reason Asyn Interface Description

State asynInt32 See [5]

SamplesCount asynInt32 Number of samples to acquire. This only affects the

number of ADC samples that will get stored into

memory.

ClockSource asynInt32 Overrides parent to prevent the changing the clock

settings when the loop is running (Device is in ON

state).

ClockFrequency asynInt32 Overrides parent to prevent the changing the clock

settings when the loop is running (Device is in ON

state).

ClockDivider asynInt32 Overrides parent to prevent the changing the clock

settings when the loop is running (Device is in ON

state).

 Table 31: AI Channel Group NDS properties. Clock setting are meant to be used during development and cannot

be changed while the controller is running = while device is in ON state.

Parameters not listed in Table 31 are unsupported or overridden. They are:

Asyn Reason Asyn Interface Reason for override

Command asynOctetWrite “START” and “STOP” messages are overridden in

this class, because state transitions are controlled by

the Device Class, based on software interrupts, not

Module Technical Documentation

Document Number

Date 20 April 2015

41(72)

the user.

TriggerRepeat asynInt32 Is used by the parent class for automatic rearm. In

LLRF implementation, Device Class is responsible

for arming the board.

TriggerDelay Not supported

TriggerCondition asynInt32 Not Supported in the same way. Generic Struck

Trigger setup has no meaning.

Enable asynInt32 CG cannot be disabled

Table 32: AI Channel Group overridden NDS properties

3.3.4.16 LLRF Analog Input Channel (sis8300llrfAIChannel Class)

The Analog Input Channel Class derives from generic sis8300 AI CH Class [6] for usage with channels

AI0 (Cavity input) and AI1 (Reference input). It overrides asynReasons not supported by the LLRF

specific implementation. It does not add any new state transitions and overrides two from the parent

class (see [6]), their actions are defined in Table 30:

State handler Description

ENTER

PROCESSING

Keep parent

LEAVE

PROCESSING

Extend parent to add signal magnitude and angle read

ENTER DISABLED Keep parent’s handler, that calls commitParameters

This Class implements the following parameters:

Asyn Reason Asyn Interface Description

State asynInt32 See [5]

Enable asynFloat64 Overridden, so that disabling of AI0 (cavity input)

and AI1 (reference input) is not allowed.

SignalAngle asynFloat64 Current signal Angle, should always be read together

with SignalMagnitude after a new MA point is

Module Technical Documentation

Document Number

Date 20 April 2015

42(72)

available (see NewMAPoint)

SignalMagnitude asynFloat64 Current Signal Magnitude, should always be read

together with Angle after a new MA point is

available (see NewMAPoint)

SignalI asynFloat64 Current Signal I value. Is calculated together with Q

value when a new MA point is received from the

device. It should always be read together with Q

when a new MA point is available (see

NewMAPoint)

SignalQ asynFloat64 Current Signal Q value. Is calculated together with Q

value when a new MA point is received from the

device. It should always be read together with I when

a new MA point is available (see NewMAPoint)

NewMAPoint asynInt32 Writing to this will force read of a MA point from

the device. The record will get processed when a new

MA and corresponding IQ point is available.

When using the MA and IQ values, one should only

tread out the pairs when this is processed, because

the data is correlated.

Table 33: AI Channel NDS properties

3.4 EPICS Database

EPICS database will be responsible for communication with the user. Records will be provided for

configuration of all the LLRF board functional blocks and HW status update.

3.4.1 Exported interface

The interface exported by this block is a set of EPICS process variables that can be accessed through

the CA. The templates are separated into several groups and have the following prefixes:

 sis8300llrf-Main prefix includes all the templates required for normal operation of the device,

 sis8300llrf-RMSStatistics includes extra records for resetting RMS statistics from the database,

 sis8300llrf-Register includes a list of LLRF-specific registers and allows one to read/write raw

values from/to them,

 sis8300llrf-Setup includes records required for the setup procedure,

 sis3800llrf-SpecOp includes all the records needed to use the device in special operating modes

3.4.1.1 sis8300llrf-Main-Device.template

This template adds functionality to the generic sis8300Device.template [6]. In order to successfully load

the template, the generic one must be loaded first. The added functionality is the following:

Module Technical Documentation

Document Number

Date 20 April 2015

43(72)

Name Type Description

$(PREFIX) mbbi Adds RESETTING to the list of

generic sis8300Device states

$(PREFIX):PT

$(PREFIX):PT-RBV

longout,

longin

Pulse Type.

$(PREFIX):PMS bi PMS status, 1 if active, 0 if not

$(PREFIX):ARM bi Used to track when the device was

armed from software.

$(PREFIX):PULSE_DONE bi Used to track when PULSE_DONE

interrupts are received from the

device.

$(PREFIX):UPDATE_REASON bi Tracks calls to update parameters, that

can:

 Make shadow registers visible

to the controller

 Force the controller to load

new SP/FF tables

 Inform the controller of a new

pulse type

 Init done

$(PREFIX):PULSEDONECNT longin Number of received PULSE_DONE

interrupts since last transition from

INIT to ON

$(PREFIX):PULSEMISSED bi Pulse missed indicator. It will go high

if the number of pulses we read out

from the device between two arms !=

1.

$(PREFIX):STATUS mbbi Tracks controller status. Can be

NONE, PMS, ARMED,

PULSE_DONE and is mostly used for

development purposes.

$(PREFIX):RTM mbbo Adds the PINI option and default

setting to the parent’s record.

Table 34: sis8300llrfDevice.template records

Module Technical Documentation

Document Number

Date 20 April 2015

44(72)

The following macros must be defined when loading the template:

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

PULSE_TYPE Default Pulse Type

RTM RTM type to select by default, can be:

 SIS8900 = 0,

 DWC8VM1 = 1,

 DS8VM1 = 2,

 NONE = 3

Table 35: sis8300llrfDevice.template macros

3.4.1.2 sis8300llrf-Main-ControlTable-CG.template

This template defines the database with records used to control and monitor the CT CG parameters

Name Type Description

$(PREFIX):$(CTRL_TABLE_TYPE)-STAT mbbi State of the channel group, see [5].

$(PREFIX):$(CTRL_TABLE_TYPE)-

MAXNSAMPLES

longin Maximum number of elements in a

control table. Read only – information

is obtained directly from the device.

Table 36: sis8300llrfControlTableChannelGroup.template records

The following macros must be defined to successfully load the

sis8300llrfControlTableChannelGroup.template:

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

CTRL_TABLE_TYPE Either SP of FF

Module Technical Documentation

Document Number

Date 20 April 2015

45(72)

ASYN_ADDR 3 for SP, 4 for FF

Table 37: sis8300llrfControlTableChannelGroup.template macros

3.4.1.3 sis8300llrf-Main-FFTable-CG.template

This template adds two FF specific records to the 3.4.1.2 template.

Name Type Description

$(PREFIX):$(CTRL_TABLE_TYPE)-

TABLESPEED

$(PREFIX):$(CTRL_TABLE_TYPE)-

TABLESPEED-RBV

mbbo,

mbbi

Speed of the FF table, see 3.3.4.4

Table 38: sis8300llrfFFTableChannelGroup.template records

The following macros must be defined to successfully load the

sis8300llrfFFTableChannelGroup.template:

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

CTRL_TABLE_TYPE FF

ASYN_ADDR 4

Table 39: sis8300llrfFFTableChannelGroup.template

3.4.1.4 sis8300llrf-Main-ControlTable-CH.template

This template defines the database with records used to control and monitor the CT CH parameters

Name Type Description

$(PREFIX):$(CTRL_TABLE_TYPE)-

$(CHAN_NAME=PT$PULSE_TYPE))-

STAT

mbbi State of the channel group, see [5].

Module Technical Documentation

Document Number

Date 20 April 2015

46(72)

$(PREFIX):$(CTRL_TABLE_TYPE)-

$(CHAN_NAME=PT$PULSE_TYPE))-I

$(PREFIX):$(CTRL_TABLE_TYPE)-

$(CHAN_NAME=PT$PULSE_TYPE))-I-

GET

waveform I table, the –GET record has to be

manually processed and will read the

table from hardware, convert it from

IQ sample to a float I sample.

$(PREFIX):$(CTRL_TABLE_TYPE)-

$(CHAN_NAME=PT$PULSE_TYPE))-Q

$(PREFIX):$(CTRL_TABLE_TYPE)-

$(CHAN_NAME=PT$PULSE_TYPE))-Q-

GET

waveform Q table, the –GET record has to be

manually processed and will read the

table from hardware, convert it from

IQ sample to a float Q sample

$(PREFIX):$(CTRL_TABLE_TYPE)-

$(CHAN_NAME=PT$(PULSE_TYPE))-

WRTBL

bo Write Table, process this record to

write specified I and Q tables to

hardware.

$(PREFIX):$(CTRL_TABLE_TYPE)-

$(CHAN_NAME=PT$PULSE_TYPE))-

SMNM-RBV

longin Number of elements in the table that

is actually written to hardware.

$(PREFIX):$(CTRL_TABLE_TYPE)-

$(CHAN_NAME=PT$PULSE_TYPE))-

RAWTABLE-GET

waveform Raw table that is currently in the

device memory (containing IQ

samples). Record must be manually

processed and will fetch the data from

the device memory every time it is.

Table 40: sis8300llrfControlTableChannel.template records

The following macros must be defined to successfully load the

sis8300llrfControlTableChannel.template

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

CTRL_TABLE_TYPE Either SP of FF

CTRL_TABLE_CG_NAME Either sp or ff

PULSE_TYPE The pulse this channel belongs to

Module Technical Documentation

Document Number

Date 20 April 2015

47(72)

CTRL_TABLE_MAX_NSAMPLES Maximum number of elements in a control table

Table 41: sis8300llrfControlTableChannel.template macros

3.4.1.5 sis8300llrf-Main-Controller-CG.template

This template defines the database with records used to control and monitor the CTRL CG parameters.

In addition to standard definitions, this template also provides control for PI error RMS statistics.

Name Type Description

$(PREFIX):LLRFCTRL-STAT mbbi State of the channel group, see [5].

$(PREFIX):TRGSETUP

$(PREFIX):TRGSETUP-RBV

mbbo,

mbbi

Trigger setup, can be

 MLVDS-012 = 0

 MLVDS-456 = 1

$(PREFIX): PIERR-SMNM-TOTAL longin Total number of PI err samples,

acquired during RAMP UP + ACTIVE

phase.

$(PREFIX): PIERR-SMNM-RAMPUP longin Number of PI error samples acquired

during RAMP UP phase.

$(PREFIX): PIERR-SMNM-ACTIVE longin Number of PI error samples acquired

during ACTIVE phase.

$(PREFIX): ADC-SMNM-TOTAL longin Number of ADC samples acquired

during RAMP UP + ACTIVE phase.

$(PREFIX):OUTPUT-DRIVESEL

$(PREFIX):OUTPUT-DRIVESEL-RBV

bo,

bi

Select the source that will drive the

output:

 PI Driven (normal operation)

= 0

 FF Driven = 1

$(PREFIX):CHDATARDY bi Processes when channel data is ready,

Its forward link can for example be

used to trigger arbitrary functionality

that sets new parameters on the device.

If the chain of processing (database

link from this record to the parameter

record) is unbroken, the new

Module Technical Documentation

Document Number

Date 20 April 2015

48(72)

parameter(s) are written to hardware

before the board is armed again.

Table 42: sis8300llrfControllerChannelGroup.template records

The following macros must be defined to successfully load the

sis8300llrfControllerChannelGroup.template

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

PI_ERR_MAX_NSAMPLES Maximum number of PI error samples – used as DRVH limit

PI_ERR_SNM Default number of PI error samples

TRG_VAL Default trigger setup (optional, default value is 0)

OUTPUT_DRIVE Select the default source that will drive the output (optional,

default value is 0)

Table 43: sis8300llrfControllerChannelGroup.template macros

3.4.1.6 sis8300llrf-Main-IQSmpl-CH.template

This template defines the database with records used to control and monitor the IQ CH parameters.

Name Type Description

$(PREFIX):IQSMPL-STAT mbbi Channel status, see [5]

$(PREFIX): IQSMPL-NEARIQM

$(PREFIX) IQSMPL-NEARIQM -RBV

ao,

ai

Near IQ parameter M

$(PREFIX): IQSMPL-NEARIQN

$(PREFIX): IQSMPL-NEARIQN -RBV

ao,

ai

Near IQ parameter N

$(PREFIX):IQSMPL-CAVINDELAYVAL

$(PREFIX):IQSMPL-CAVINDELAYVAL-

longout

,

Cavity input delay

Module Technical Documentation

Document Number

Date 20 April 2015

49(72)

RBV longin

$(PREFIX):IQSMPL-CAVINDELAYEN

$(PREFIX):IQSMPL-CAVINDELAYEN-

RBV

bo,

bi

Cavity input delay enable

$(PREFIX):IQSMPL-ANGOFFSETVAL

$(PREFIX):IQSMPL-ANGOFFSETVAL-

RBV

ao,

ai

IQ angle offset

$(PREFIX):IQSMPL-ANGOFFSETEN

$(PREFIX):IQSMPL-ANGOFFSETEN-RBV

bo,

bi

IQ angle offset enable

Table 44: sis8300llrfIQSamplingChannel.template records

The following macros must be defined to successfully load the sis8300llrfIOIQChannel.template

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

ASYN_ADDR 2

IQ_ANG_DRVH,

IQ_ANG_DRVL

High and low limit for the value of IQ angle

IQ_CAV_INP_DELAY_DRVH,

IQ_CAV_INP_DELAY_DRVL

High and low limit for the value of cavity input delay

Table 45: sis8300llrfIQSamplingChannel.template macros

3.4.1.7 sis8300llrf-Main-VMCtrl-CH.template

This template defines the database with records used to control and monitor the VM CH parameters.

Name Type Description

$(PREFIX):VM-STAT mbbi Channel Status, see [5]

Module Technical Documentation

Document Number

Date 20 April 2015

50(72)

$(PREFIX):VM-MAGLIMEN

$(PREFIX): VM-MAGLIMEN-RBV

bo,

bi

Enable/disable magnitude limiter

$(PREFIX): VM-MAGLIMVAL

$(PREFIX): VM- MAGLIMVAL-RBV

ao,

ai

Magnitude limiter value

$(PREFIX): VM-MAGLIMSTAT bi Magnitude limit status,

None=0, Active=1

$(PREFIX): VM-INVIEN

$(PREFIX): VM-INVIEN-RBV

bo,

bi

Enable inverse I output

$(PREFIX): VM-INVQEN

$(PREFIX): VM-INVQEN-RBV

bo,

bi

Enable inverse Q output

$(PREFIX): VM-SWAPIQEN

$(PREFIX) VM-SWAPIQEN-RBV

bo,

bi

Swap IQ.

No = 0, Yes = 1

$(PREFIX):VM-PREDISTEN

$(PREFIX):VM-PREDISTEN-RBV

bo,

bi

Enable pre-distortion of the input to

VM

$(PREFIX):VM-PREDIST-RC00

$(PREFIX):VM-PREDIST-RC00-RBV

ao,

ai

VM pre-distortion matrix value for

RC00

$(PREFIX):VM-PREDIST-RC01

$(PREFIX):VM-PREDIST-RC01-RBV

ao,

ai

VM pre-distortion matrix value for

RC01

$(PREFIX):VM-PREDIST-RC10

$(PREFIX):VM-PREDIST-RC10-RBV

ao,

ai

VM pre-distortion matrix value for

RC10

$(PREFIX):VM-PREDIST-RC11

$(PREFIX):VM-PREDIST-RC11-RBV

ao,

ai

VM pre-distortion matrix value for

RC11

$(PREFIX):VM-PREDIST-DCOI ao, Pre-distortion DC offset for I

component

Module Technical Documentation

Document Number

Date 20 April 2015

51(72)

$(PREFIX):VM-PREDIST-DCOI-RBV ai

$(PREFIX):VM-PREDIST-DCOQ

$(PREFIX):VM-PREDIST-DCOQ-RBV

ao,

ai

Pre-distortion DC offset for Q

component

Table 46: sis8300llrfVMControlChannel.template records

The following macros must be defined to successfully load the sis8300llrfIOVMChannel.template

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

ASYN_ADDR 3

MAGLIM_DRVH,

MAGLIM_DRVL

Highest and lowest magnitude limit value accepted by hardware

(see

PreDistRC10 asynFloat64 Pre-distortion matrix, value RC10. Limits are:

[-21, 21 – 2-12] → [-2.0, 1.99975585938]

PreDistRC11 asynFloat64 Pre-distortion matrix, value RC11. Limits are:

[-21, 21 – 2-12] → [-2.0, 1.99975585938]

PreDistDCOI asynFloat64 Pre-distortion DC offset for I part. Limits are

[-20, 20 – 2-15] → [-1.0, 1.99975585938]

PreDistDCOQ asynFloat64 Pre-distortion DC offset for Q part. Limits are

[-20, 20 – 2-15] → [-1.0, 1.99975585938]

Table 20)

PREDISTRC_DRVH,

PREDISTRC_DRVL

Highest and lowest value for pre-distortion matrix element

accepted by hardware (see

PreDistRC10 asynFloat64 Pre-distortion matrix, value RC10. Limits are:

Module Technical Documentation

Document Number

Date 20 April 2015

52(72)

[-21, 21 – 2-12] → [-2.0, 1.99975585938]

PreDistRC11 asynFloat64 Pre-distortion matrix, value RC11. Limits are:

[-21, 21 – 2-12] → [-2.0, 1.99975585938]

PreDistDCOI asynFloat64 Pre-distortion DC offset for I part. Limits are

[-20, 20 – 2-15] → [-1.0, 1.99975585938]

PreDistDCOQ asynFloat64 Pre-distortion DC offset for Q part. Limits are

[-20, 20 – 2-15] → [-1.0, 1.99975585938]

Table 20)

PREDISTDC_DRVH,

PREDISTDC_DRVL

Highest and lowest value for DC offset accepted by hardware

(see

PreDistRC10 asynFloat64 Pre-distortion matrix, value RC10. Limits are:

[-21, 21 – 2-12] → [-2.0, 1.99975585938]

PreDistRC11 asynFloat64 Pre-distortion matrix, value RC11. Limits are:

[-21, 21 – 2-12] → [-2.0, 1.99975585938]

PreDistDCOI asynFloat64 Pre-distortion DC offset for I part. Limits are

[-20, 20 – 2-15] → [-1.0, 1.99975585938]

PreDistDCOQ asynFloat64 Pre-distortion DC offset for Q part. Limits are

[-20, 20 – 2-15] → [-1.0, 1.99975585938]

Table 20)

PREDISTORT_VM_OUT_EN Set to 1 to enable pre-distortion by default

INVERT_Q Set to 1 to enable inversion by default

INVERT_I Set to 1 to enable the inversion by default

Table 47: sis8300llrfVMControlChannel.template macros

Module Technical Documentation

Document Number

Date 20 April 2015

53(72)

3.4.1.8 sis8300llrf-Main-ILOCK-CH.template

This template defines the database with records used to control and monitor the Interlock CH parameters.

Name Type Description

$(PREFIX):$(ILOCK_CH)-STAT mbbi Channel Status, see [5]

$(PREFIX):$(ILOCK_CH)-HARINP bi Current HArlink iput status,

Low=0, High=1

$(PREFIX):$(ILOCK_CH)-CONDITION

$(PREFIX):$(ILOCK_CH)-CONDITION-RBV

mbbo,

mbbi

Interlock condition select, can be:

 DISABLED = 0

 RISING_EDGE = 1

 FALLING_EDGE = 2

 HIGH_LEVEL = 3

 LOW_LEVEL = 4

Table 48: sis8300llrfILOCKChannel.template records

The following macros must be defined to successfully load the sis8300llrfPIChannel.template

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

ILOCK_CH ILOCK0, ILOCK1, ILOCK2, ILOCK3

ASYN_ADDR  ILOCK0 = 5,

 ILOCK1 = 6,

 ILOCK2 = 7,

 ILOCK3 = 8

 (see ILOCK_CH macro)

Table 49: sis8300llrfILOCKChannel.template macros

3.4.1.9 sis8300llrf-Main-PI-CH.template

This template defines the database with records used to control and monitor the PI CH parameters. In

addition it defines some records required for PI err RMS statistics.

Module Technical Documentation

Document Number

Date 20 April 2015

54(72)

Name Type Description

$(PREFIX):$(PI_TYPE)-STAT mbbi Channel Status, see [5]

$(PREFIX):$(PI_TYPE)-OVRFLW bi Overflow status,

None=0, overflov=1

$(PREFIX):$(PI_TYPE)-FIXEDSPVAL

$(PREFIX):$(PI_TYPE)-FIXEDSPVAL-RBV

ao,

ai

Fixed SP value

$(PREFIX):$(PI_TYPE)-FIXEDSPEN

$(PREFIX):$(PI_TYPE)-FIXEDSPEN-RBV

bo,

bi

Enable/disable fixed SP

$(PREFIX):$(PI_TYPE)-FIXEDFFVAL

$(PREFIX):$(PI_TYPE)-FIXEDFFVAL-RBV

ao,

ai

Fixed FF value

$(PREFIX):$(PI_TYPE)-FIXEDFFEN

$(PREFIX):$(PI_TYPE)-FIXEDFFEN-RBV

bo,

bi

Enable/disable fixed FF

$(PREFIX):$(PI_TYPE)-GAINK

$(PREFIX):$(PI_TYPE)-GAINK-RBV

ao,

ai

PI gain K value

$(PREFIX):$(PI_TYPE)-GAINTSDIVTI

$(PREFIX):$(PI_TYPE)-GAINTSDIVTI-RBV

ao,

ai

PI gain Ts/Ti value

$(PREFIX):$(PI_TYPE)-SATMAX

$(PREFIX):$(PI_TYPE)-SATMAX-RBV

ao,

ai

Maximum saturation value

$(PREFIX):$(PI_TYPE)-SATMIN

$(PREFIX):$(PI_TYPE)-SATMIN-RBV

ao,

ai

Minimum saturation value

$(PREFIX):$(PI_TYPE)-ERR waveform PI error

$(PREFIX):$(PI_TYPE)-ERR-SMNM-RBV longin Number of PI errors read

$(PREFIX):$(PI_TYPE)-RMS ai Current PI error RMS value

Module Technical Documentation

Document Number

Date 20 April 2015

55(72)

$(PREFIX):$(PI_TYPE)-RMS-AVERAGE ai Cumulative average PI error RMS

value in the last RMS-

PULSECNT pulses

$(PREFIX):$(PI_TYPE)-RMS-MAX ai Maximum PI error RMS value in

the last RMS-PULSECNT pulses

$(PREFIX):$(PI_TYPE)-RMS-PULSECNT longin Number of pulses over which

RMS statistics was tracked

$(PREFIX):$(PI_TYPE):RMS-

SMNMIGNORE

$(PREFIX):$(PI_TYPE):RMS-

SMNMIGNORE-RBV

longout,

longin

Number of samples to ignore at the

end of the pulse when calculating

the RMS

$(PREFIX):$(PI_TYPE)-RMS-RESET

$(PREFIX):$(PI_TYPE)-RMS-RESET-RBV

bo,

bi

Reset RMS statistics

Table 50: sis8300llrfPIChannel.template

The following macros must be defined to successfully load the sis8300llrfPIChannel.template

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

PI_TYPE PI-I or PI-Q

ASYN_ADDR 0 for PI-I, 1 for PI-Q

PI_ERR_MAX_NSAMPLES Maximum number of PI error samples

FIXEDSP_DRVH,

FIXEDSP_DRVL

Highest and lowest value for fixed SP value accepted by

hardware (see Table 24)

FIXEDFF_DRVH,

FIXEDFF_DRVL

Highest and lowest value for fixed FF value accepted by

hardware (see Table 24)

GAINK_DRVH, Highest and lowest value for K Gain value accepted by

Module Technical Documentation

Document Number

Date 20 April 2015

56(72)

GAINK_DRVL hardware (see Table 24)

GAINTSDIVTI_DRVH,

GAINTSDIVTI_DRVL

Highest and lowest value for Ts/Ti Gain value accepted by

hardware (see Table 24)

GAIN_PREC Number of decimal points for Ts/Ti Gain value accepted by

hardware (see Table 24)

SATMAX_DRVH,

SATMAX_DRVL

Highest and lowest value for Maximum saturation value

accepted by hardware (see Table 24)

SATMIN_DRVH,

SATMIN_DRVL

Highest and lowest value for Minimum saturation value

accepted by hardware (see Table 24)

Table 51: sis8300llrfPIChannel.template macros

3.4.1.10 sis8300llrf-Main-ModRippleFilt-CH.template

This template defines the database with records used to control and monitor the Modulator ripple filter

parameters.

Name Type Description

$(PREFIX): MODRIPPFIL-STAT mbbi Channel Status, see [5]

$(PREFIX): MODRIPPFIL-CONSTS

$(PREFIX): MODRIPPFIL-CONSTS-RBV

ao,

ai

Modulator Ripple Filter Constant

S

$(PREFIX): MODRIPPFIL-CONSTC

$(PREFIX): MODRIPPFIL-CONSTC-RBV

ao,

ai

Modulator Ripple Filter Constant

C

$(PREFIX): MODRIPPFIL-CONSTA

$(PREFIX): MODRIPPFIL-CONSTA-RBV

ao,

ai

Modulator Ripple Filter Constant

A

$(PREFIX): MODRIPPFIL-STARTEVNT

$(PREFIX):MODRIPPFIL-STARTEVNT-RBV

mbbo,

mbbi

Modulator Ripple Filter Start

Event

$(PREFIX): MODRIPPFIL-STOPEVNT

$(PREFIX): MODRIPPFIL-STOPEVNT-RBV

mbbo,

mbbi

Modulator Ripple Filter Stop

Event

Module Technical Documentation

Document Number

Date 20 April 2015

57(72)

$(PREFIX): MODRIPPFIL-QEN

$(PREFIX): MODRIPPFIL-QEN-RBV

bo,

bi

Enable Modulator ripple filter for

Q part

$(PREFIX): MODRIPPFIL-IEN

$(PREFIX): MODRIPPFIL-IEN-RBV

bo,

bi

Enable Modulator ripple filter for

Q part

Table 52: sis8300llrfModRippleFiltChannel.template records

The following macros must be defined in order to successfully load the template

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

ASYN_ADDR 4

CONSTS_DRVH,

CONSTS_DRVL

Highest and lowest value for modulator ripple filter constant S

value accepted by hardware (see Table 26)

CONSTC_DRVH,

CONSTC_DRVL

Highest and lowest value for modulator ripple filter constant C

value accepted by hardware (see Table 26)

CONSTA_DRVH,

CONSTA_DRVL

Highest and lowest value for modulator ripple filter constant A

value accepted by hardware (see Table 26)

Table 53: sis8300llrfModRippleFiltChannel.template macros

3.4.1.11 sis8300llrf-Main-NotchFilt-CH.template

This template defines the database with records used to control and monitor the Modulator ripple filter

parameters.

Name Type Description

$(PREFIX): NOTCHFIL-CONSTAREAL

$(PREFIX): NOTCHFIL-CONSTAREAL-RBV

ao,

ai

Notch Filter Constant A real part

$(PREFIX): NOTCHFIL-CONSTAIMAG ao, Notch Filter Constant A imaginary

Module Technical Documentation

Document Number

Date 20 April 2015

58(72)

$(PREFIX): NOTCHFIL-CONSTAIMAG-RBV ai part

$(PREFIX): NOTCHFIL-CONSTBREAL

$(PREFIX): NOTCHFIL-CONSTBREAL-RBV

ao,

ai

Notch Filter Constant B real part

$(PREFIX): NOTCHFIL-CONSTBIMAG

$(PREFIX): NOTCHFIL-CONSTBIMAG-RBV

ao,

ai

Notch Filter Constant B real

imaginary part

$(PREFIX): NOTCHFIL-IEN

$(PREFIX): NOTCHFIL-IEN-RBV

bo,

bi

Enable Notch filter

Table 54: sis8300llrfNotchFiltChannel.template records

The following macros must be defined in order to successfully load the template

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

ASYN_ADDR 4

CONSTS_DRVH,

CONSTS_DRVL

Highest and lowest value for modulator ripple filter constant S

value accepted by hardware (see Table 26)

CONSTC_DRVH,

CONSTC_DRVL

Highest and lowest value for modulator ripple filter constant C

value accepted by hardware (see Table 26)

CONSTA_DRVH,

CONSTA_DRVL

Highest and lowest value for modulator ripple filter constant A

value accepted by hardware (see Table 26)

Table 55: sis8300llrfModRippleFiltChannel.template macros

3.4.1.12 sis8300llrf-Main-SigMon-CG.template

This template defines records used to control the SIGMON CG

Name Type Description

Module Technical Documentation

Document Number

Date 20 April 2015

59(72)

$(PREFIX):SMON-STAT mbbi Channel Group status, see [5]

Table 56: sis8300llrfSigmonChannelGroup.template records

The following macros must be defined in order to successfully load the template

Macro Description

PREFIX Device Prefix

ASYN_PORT Asyn Port Name

ASYN_ADDR Value should be 5

3.4.1.13 sis8300llrf-Main-SigMon-CH.template

This template defines the database with records used to control and monitor the Signal Monitor

parameters.

Name Type Description

$(PREFIX):$(CHANNEL_ID)-SMON-STAT mbbi Channel Status, see [5]

$(PREFIX):$(CHANNEL_ID)-SMON-

ALARMSTAT

bi Signal monitor alarm status

$(PREFIX):$(CHANNEL_ID)-SMON-

PMSSTAT

bi Signal monitor PMS status

$(PREFIX):$(CHANNEL_ID)-SMON-

ILCKSTAT

bi Signal monitor Interlock status

$(PREFIX):$(CHANNEL_ID)-SMON-

MAGCURR

ai Current magnitude for the

corresponding ADC channel

$(PREFIX):$(CHANNEL_ID)-SMON-

MAGMINMAX

ai Maximum or minimum

magnitude for the corresponding

ADC channel during the last

signal monitor active period.

$(PREFIX):$(CHANNEL_ID)-SMON-

MAGTRESHVAL

ao, Signal monitor magnitude

threshold value

Module Technical Documentation

Document Number

Date 20 April 2015

60(72)

$(PREFIX):$(CHANNEL_ID)-SMON-

MAGTRESHVAL-RBV

ai

$(PREFIX):$(CHANNEL_ID)-SMON-

STARTEVNT

$(PREFIX):$(CHANNEL_ID)-SMON-

STARTEVNT-RBV

mbbi,

mbbo

Event defining the start of signal

monitor active period

$(PREFIX):$(CHANNEL_ID)-SMON-

STOPEVNT

$(PREFIX):$(CHANNEL_ID)-SMON-

STOPEVNT-RBV

mbbo,

mbbi

Event defining the end of signal

monitor active period

$(PREFIX):$(CHANNEL_ID)-SMON-

ALARMCND

$(PREFIX):$(CHANNEL_ID)-SMON-

ALARMCND-RBV

bo,

bi

Alarm condition

$(PREFIX):$(CHANNEL_ID)-SMON-PMSEN

$(PREFIX):$(CHANNEL_ID)-SMON-

PMSEN-RBV

bo,

bi

Enable/Disable PMS if alarm is

raised

$(PREFIX):$(CHANNEL_ID)-SMON-

ILOCKEN

$(PREFIX):$(CHANNEL_ID)-SMON-

ILOCKEN-RBV

bo,

bi

Enable/Disable Interlock if alarm

is raised

$(PREFIX):$(CHANNEL_ID)-SMON-

ACDCSEL

$(PREFIX):$(CHANNEL_ID)-SMON-

ACDCSEL-RBV

bo,

bi

Signal type select – AC or DC

Table 57: sis8300llrfSignalMonitorChannel.template records

The following macros must be defined in order to successfully load the template

Macro Description

PREFIX Name prefix

Module Technical Documentation

Document Number

Date 20 April 2015

61(72)

ASYN_PORT Asyn Port Name

CHANNEL_ID AI2, AI3, AI4, AI5, AI6, AI7, AI8, AI9

ASYN_ADDR Can be 2, 3, 4, 5, 6, 7, 8, 9 and corresponds to the ADC channel

number (see macro CHANNEL_ID)

MAGTRESH_DRVH,

MAGTRESH_DRVL

Highest and lowest value for modulator ripple filter constant S

value accepted by hardware (see Table 28Table 26)

Table 58: SignalMonitorChannel.template macros

3.4.1.14 sis8300llrf-Main-AI-CG.template

The template for AI Channel overrides some settings from sis8300AICHannelGroup.template [6]. The

list of overridden settings can be found in Table 32. In order to successfully load the template, the

mentioned generic AI CG template must be loaded first. The following macros must be defined when

loading the template:

Macro Description

PREFIX Name prefix

CHANNEL_ID Unique ID (usually AI, has to be the same as when loading

the sis8300AIChannelGroup.template)

AI_NELM Max number of ADC samples per one channel

Table 59: sis8300llrfAIChannelGroup.template macros

3.4.1.15 sis8300llrf-Main-AI-CH.template

The template for AI channel overrides some settings from sis8300AIChannel.template [6] and adds

functionality specific to AI0 (cavity input) and AI1 (reference input). In order to successfully load the

template, the mentioned generic AI CH template must be loaded first.

Name Type Description

$(PREFIX):$(CHANNEL_ID)-ENBL bo Should always be set to 1 when using

the Struck SIS8300L in LLRF context

(see Table 5)

$(PREFIX):$(CHANNEL_ID)-IN ai Overrides the single sample read

option for AI channel

Module Technical Documentation

Document Number

Date 20 April 2015

62(72)

$(PREFIX):$(CHANNEL_ID)-ANG ai Signal Angle, see Table 33

$(PREFIX):$(CHANNEL_ID)-MAG ai Signal Magnitude, see Table 33

$(PREFIX):$(CHANNEL_ID)-I ai Signal I, see Table 33

$(PREFIX):$(CHANNEL_ID)-Q ai Signal Q, see Table 33

$(PREFIX):$(CHANNEL_ID)-

GETNEWMAPOINT

bo Read new MA point from the device

and calculate the corresponding IQ

values, see Table 33

$(PREFIX):$(CHANNEL_ID)-

NEWMAPOINT

bi New MA and calculated IQ point is

available for readout, see Table 33

Table 60: sis8300llrfAIChannel.template records

The following macros must be defined when loading the template:

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

ASYN_ADDR Channel Number (0-9), corresponds to ADC channel

number

CHANNEL_ID Unique ID (usually AI0 to AI9, the same as when loading

the sis8300AIChannel.template)

ENABLE 1 for enabled, 0 for disabled

Table 61: sis8300llrfAIChannel.template macros

3.4.1.16 sis8300llrf-Main-CalcFixedPointMagAng.template

This channel adds extra records, used to calculate Magnitude and Angle corresponding to the fixed SP and fixed

FF point settings from the 33LLRF PI Channel (sis8300llrfPIChannel Class). This is mostly used

during setup procedure (see

Module Technical Documentation

Document Number

Date 20 April 2015

63(72)

The following macros must be defined when loading the template:

Macro Description

PREFIX Name prefix

PI_ONE, PI_TWO Has to correspond to PI channel names defined in Table 51.

Normally PI-I and PI-Q

Table 65: sis8300llrf-RMS-statistics-reset.template macros

sis8300llrf-Setup.template).

Name Type Description

$(PREFIX):PI-

FIXED$(FIXED_POINT_TYPE)MAG

calc This is where the MA point is

calculated from the IQ point. The VAL

field of the record holds the magnitude

value

$(PREFIX):PI-

FIXED$(FIXED_POINT_TYPE)ANG

ai Angle value

Table 62: sis8300llrf-Main-CalcFixedPointMagAng.template records

The following macros must be defined when loading the template:

Macro Description

PREFIX Name prefix

FIXED_POINT_TYPE FF or SP

Table 63: sis8300llrf-Main-CalcFixedPointMagAng.template macros

3.4.1.17 sis8300llrf-RMS-statistics-reset.template

This template adds just one record, which allows for a “simultaneous” reset of both I and Q PI error

RMS statistics (see LLRF PI Channel (sis8300llrfPIChannel Class)).

Name Type Description

Module Technical Documentation

Document Number

Date 20 April 2015

64(72)

$(PREFIX):PI-RMS-RESET fanout Processing this record will cause a

reset of both PI-I and PI-Q RMS

average and Max value

Table 64: sis8300llrf-RMS-statistics-reset.template records

The following macros must be defined when loading the template:

Macro Description

PREFIX Name prefix

PI_ONE, PI_TWO Has to correspond to PI channel names defined in Table 51.

Normally PI-I and PI-Q

Table 65: sis8300llrf-RMS-statistics-reset.template macros

3.4.1.18 sis8300llrf-Setup.template

This template defines all the records that are used during the initial setup of the controller.

Name Type Description

$(PREFIX):SETUP-ACT

$(PREFIX):SETUP-ACT-RBV

bo,

bi

Used to set or indicate that the setup is

active. One should not start the setup

procedure by writing to this record.

The SETUP-START record is used for

this.

$(PREFIX):SIGNALACT bi Indicates if the signal is currently

active. Only to be used when operating

in Continuous Wave (CW) mode.

$(PREFIX):SETUP-START bo Write 1 to this record to start the setup

and 0 to stop/abort the setup.

Table 66: sis8300llrf-Setup.template records

The following macros must be defined when loading the template:

Macro Description

PREFIX Name prefix

Module Technical Documentation

Document Number

Date 20 April 2015

65(72)

ASYN_PORT Asyn Port Name

Table 67: sis8300llrf-Setup.template macros

3.4.1.19 sis8300llrf-SpecOp-Device.template

This template defines all the records that are used when device is operating in special operating modes.

Name Type Description

$(PREFIX):FORCETRIGG

$(PREFIX):FORCETRIGG-RBV

mbbo,

mbbi

Used for sending a specific trigger to

the device.

$(PREFIX):OPMODE

$(PREFIX):OPMODE-RBV

mbbo,

mbbi

Used for selecting a specific operating

mode

$(PREFIX):SIGNALACT bi Indicates if the signal is currently

active. Only to be used when operating

in Continuous Wave (CW) mode.

Table 68: sis8300llrf-SpecOp-Device.template records

The template must always be loaded after the 42sis8300llrf-Main-Device.template.The following

macros must be defined when loading the template:

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

Table 69: sis8300llrf-SpecOp-Device.template macros

3.4.1.20 sis8300llrf-SpecOp-ControlTable-CH.template

This template defines records for settings defines in LLRF Special Operation Control Table Channel

(sis8300llrfControlTableChannelSpecOp Class).

Name Type Description

$(PREFIX):$(CTRL_TABLE_TYPE)-SM- bo, FF table mode

Module Technical Documentation

Document Number

Date 20 April 2015

66(72)

FFTABLEMODE

$(PREFIX):$(CTRL_TABLE_TYPE)-SM-

FFTABLEMODE-RBV

bi

(PREFIX):$(CTRL_TABLE_TYPE)-SM-

ANG

wavefor

m

Set the Angle part of the Control table

$(PREFIX):$(CTRL_TABLE_TYPE)-SM-

ANG-GET

wavefor

m

Processing this record will read the

Angle part of the control table from

device memory. It has to be processed

manually. I/O interrupts are disabled.

$(PREFIX):$(CTRL_TABLE_TYPE)-SM-

ANG-SMNM-RBV

longin Current number of elements in the

Control table that is actually written to

memory (see 3.3.4.5)

$(PREFIX):$(CTRL_TABLE_TYPE)-SM-

MAG

wavefor

m

Set the magnitude part of the control

table

$(PREFIX):$(CTRL_TABLE_TYPE)-SM-

MAG-GET

wavefor

m

Processing this record will read the

magnitude part of the control table

from device memory. It has to be

processed manually. I/O interrupts are

disabled.

$(PREFIX):$(CTRL_TABLE_TYPE)-SM-

MAG-SMNM-RBV

longin Current number of elements in the

Control table that is actually written to

memory (see 3.3.4.5)

Table 70: sis8300llrf-SpecOp-ControlTable-CH.template records

The template must always be loaded after sis8300llrf-Main-ControlTable-CH.template. The following

macros need to be defined in order to successfully load the template:

Macro Description

PREFIX Name prefix

ASYN_PORT Asyn Port Name

CTRL_TABLE_TYPE FF or SP, see Table 41

CTRL_TABLE_CG_NAME Name of the corresponding channel group, sp or ff, see

Table 41

Module Technical Documentation

Document Number

Date 20 April 2015

67(72)

NUM_PULSE_TYPES Number of pulse types, has to be the same as defined in

Table 35: sis8300llrfDevice.template macros

Table 71: is8300llrf-SpecOp-ControlTable-CH.template macros

3.5 Startup Snippets

Startup snippets loading the appropriate records are defined in the module. All the startup snippets are

explained on the wiki page ()

3.6 Demo application

3.7 Software Version

The Struck SIS8300L LLRF user-space library up to version 1.2 was developed using:

 kmod-sis8300 version 1.4

The Struck SIS8300L LLRF epics module version 1.2 was developed using:

 EPICS Base 3.14.12.3

 AsynDriver 4.21

 NDS 2.3.1

 epics-sis8300 module

If you are using a different version of any part of the software consult the release notes for possible

changes.

3.8 Learning Feed Forward

Learning Feed Forward Algorithm (LFF) will try to compensate for repetitive errors, such as Lorentz

force detuning, by correcting the FF control table (Table 3). The development of the algorithm is out of

scope of this document and will not be developed by ICS.

The interface of the algorithm with the LLRF software module will be on EPICS database level and will

depend on the output of the algorithm. We propose two options:

1. The output of the algorithm is a FF table that replaces the previous FF table

2. The output of the algorithm is a FF correction table which needs to be added to the existing FF.

In the first case, the FF angle and FF magnitude tables are already available in the database. In the

second case, the impact of the algorithm can be included as:

FF = FF_MAIN + FF_CORR.

This option requires additional development. In both cases, the output of the algorithm can be written

to the corresponding waveform record trough Channel Access by using any of the CA client interfaces

Module Technical Documentation

Document Number

Date 20 April 2015

68(72)

listed here: http://www.aps.anl.gov/epics/extensions/ under ''CA Client Interfaces to other tools and

languages''. List of supported languages and tools is extensive and we believe that it offers enough

variety, so there is no plan to add support for any other language/tool.

In either case there is another decision that needs to be made: will the output of the algorithm already

provide angle and magnitude table joined into one, or will this be left to software (see section 3.2.2.1).

http://www.aps.anl.gov/epics/extensions/

Module Technical Documentation

Document Number

Date 20 April 2015

69(72)

4 REFERENCES

[1] Struck, SIS8300-L uTCA FOR PHYSICS Digitizer, Version: SIS8300L-M-2008-1-V100, 2014.

[2] Struck, SIS8900 uTCA FOR PHYSICS RTM, Version: SIS8900-M-1-1-V104, 2013.

[3] Desy and Struck, DWC8VM1 8 Channel Downconverter One Channel Vectormodulator RTM,

Version: DWC8VM1-M-1-1-V101, 2014.

[4] F. Kristensen, LLRF Control System For ESS - Specification, version 2.6, Lund: LTH, 2015.

[5] “NDS Software Developer Manual”.

[6] K. Strnisa, EPICS sis8300 Module Technical Documentation (rpm: codac-core-4.1-epics-sis8300-

doc), Cosylab, 2014.

[7] S. Peggs, Technical Design Report, Lund: European Spallation Source, 2013.

[8] N. Claesson, Data On Demand (DOD) Module Technical Documentation (rpm: codac-core-4.1-

epics-dod-doc), Cosylab, 2014.

[9] R. Stefanic, Timing Reciever Module Technical Documentation (rpm: codac-core-4.1-epics-tr-

doc), Cosylab, 2013.

Module Technical Documentation

Document Number

Date 20 April 2015

70(72)

5 LIST OF ABBREVIATIONS

Abbreviation Definition

CS Control System

ICS Integrated CS

SW Software

HW Hardware

EPICS Experimental Physics and Industrial Control System

LLRF Low Level RF

AMC Advanced Mezzanine Card

RTM Rear Transition Module

FF Feed Forward

LFF Learning FF

SP Set Point

HV High Voltage

PI Proportional Integral

CW Continuous Wave

OPI Operator Interface

NDS Nominal Device Support

CSS Control System Studio

BOY Best OPI, Yet

PV EPICS Process Variable

MTCA/µTCA/uTCA MicroTCA

MTCA.4 uTCA For Physics

Module Technical Documentation

Document Number

Date 20 April 2015

71(72)

6 APPENDIX: CURRENT DEVELOPMENT SYSTEM

The development of firmware and software components for the LLRF system is being developed in

parallel. On top of that, since there is a lot of functionality that the system will have to provide in the

end, they are being developed and added to the system one after another. Not everything listed in the

document is already implemented (either at the firmware or software level) or even defined properly.

Here is a list of things to be aware of:

Function Section

reference

Description

Signals connected to

the AI channels

2.2 at this point the board only takes two inputs, the cavity probe on the first AI

channel (AI1) and the reference input on the second (AI2). Channels 3 – 5

can have any input and have signal monitors, channels 6 – 9 are hijacked by

FPGA and contain intermediate processing results

FPGA processing

blocks and Control

Tables

2.2

2.3.1

Right now, only PI regulator and FF correction blocks are realized on the

FPGA. Blocks 3-5 are not yet properly defined and are not included in the

FPGA [4].

This of course affects the CTs that are available through software

Signal Monitoring 3.2.2.6 Signal monitoring will eventually be available on all channels except cavity

and reference input. At this point, Channels 6 -9 are hijacked by the firmware

so there are no signal monitors available (the functionality is there though).

If interlock on alarm is enabled, the Harlink input 0 will go HIGH when alarm

is triggered on a channel.

Module Technical Documentation

Document Number

Date 20 April 2015

72(72)

7 APPENDIX: CONTROL TABLE GENERATION

So far there have been no requests for generating the FF and SP tables from parameters, but based on

the example from DESY we can assume that the tables will be generated in SW from some user-defined

physical parameters, such as:

 RF field gradient,

 Phase,

 Smoothing type,

 Sampling frequency of the table,

 Filling and flattop duration…

Generating a table can be viewed as another mode of operation of the controller. This adds up to three

modes of operation:

1. User – define (SP or FF) table,

2. User – defined (SP or FF) fixed point,

3. Generate the (FF or SP) table from parameters

