diff --git a/ess/TraceWin.py b/ess/TraceWin.py
index ec65f6b70ba7950090e1fbb9c415f067a7e6ff26..e5ee440a7688e45dcbfc059da4e3baafe456c02b 100644
--- a/ess/TraceWin.py
+++ b/ess/TraceWin.py
@@ -7,9 +7,9 @@ class dst:
 
     Class afterwards hold the following
     dictionary items:
-      - x [cm]
+      - x [m]
       - xp [rad]
-      - y [cm]
+      - y [m]
       - yp [rad]
       - phi [rad]
       - E [MeV]
@@ -45,6 +45,10 @@ class dst:
         Table=numpy.fromfile(fin, dtype=numpy.float64, count=self.Np*6)
         self._data=Table.reshape(self.Np,6)
 
+        # convert x,y from cm to m:
+        self._data[:,0]*=1e-2
+        self._data[:,2]*=1e-2
+
         Footer=numpy.fromfile(fin, dtype=numpy.float64, count=1)
         self.mass=Footer[0]
 
@@ -84,9 +88,18 @@ class dst:
         out+=pack('d',self.Ib)
         out+=pack('d',self.freq)
         out+=pack('b',125)
+
+        data=self._data.copy()
+
+        # convert x,y from m to cm:
+        data[:,0]*=1e2
+        data[:,2]*=1e2
+
         data=self._data.reshape(self.Np*6,1)
+
         for x in data:
             out+=pack('d',x)
+
         out+=pack('d',self.mass)
         print >>fout, out
         #data.tofile(fout)
@@ -111,9 +124,9 @@ class plt:
       - Zgen [cm] (location)
       - phase0 [deg] (ref phase)
       - wgen [MeV] (ref energy)
-      - x [array, cm]
+      - x [array, m]
       - xp [array, rad]
-      - y [array, cm]
+      - y [array, m]
       - yp [array, rad]
       - phi [array, rad]
       - E [array, MeV]
@@ -184,6 +197,9 @@ class plt:
             for j in xrange(7):
                     c=self._columns[j]
                     data[c]=Table[:,j]
+                    # convert x,y from cm to m
+                    if c in ['x', 'y']:
+                        data[c]*=1e-2
             self._data.append(data)
 
     def __getitem__(self, key):
@@ -217,37 +233,16 @@ class plt:
             self.s.append(self[i]['Zgen']/100.0)
         self.s=numpy.array(self.s)
 
-    def calc_rel(self):
-        '''
-        Calculates relativistic gamma/beta
-        at each position, based on 
-        AVERAGE beam energy
-        (NOT necessarily reference)
-        '''
-        import numpy
-
-        if not hasattr(self,'avg'):
-            self.calc_avg()
-        self.gamma=[]
-        self.beta=[]
-        for i,j in zip(self.Nelp,xrange(len(self.Nelp))):
-            Eavg=self.avg['E'][j]
-            self.gamma.append((self.mc2+Eavg)/self.mc2)
-            self.beta.append(numpy.sqrt(1.-1./self.gamma[-1]**2))
-        self.gamma=numpy.array(self.gamma)
-        self.beta=numpy.array(self.beta)
-
     def calc_avg(self):
         '''
         Calculates averages of 6D coordinates at each
         element, such that e.g.
         self.avg["x"] gives average X at each location.
 
-        Units: cm
+        Units: m, rad, MeV
         '''
         import numpy
 
-
         self.avg=dict(x=[], xp=[], y=[], yp=[], E=[], phi=[])
 
         vals=self._columns[:-1]
@@ -257,24 +252,25 @@ class plt:
             for v in vals:
                 self.avg[v].append(numpy.average(data[v]))
 
-    def calc_std(self):
+    def calc_rel(self):
         '''
-        Calculates the beam sizes
-
+        Calculates relativistic gamma/beta
+        at each position, based on 
+        AVERAGE beam energy
+        (NOT necessarily reference)
         '''
-
         import numpy
 
-        if not hasattr(self,'sigma'):
-               self.calc_sigma()
-
-        vals=self._columns[:-1]
-
-        self.std={}
-
-        for j in xrange(len(vals)):
-            v=vals[j]
-            self.std[v]=numpy.sqrt(self.sigma[:,j,j])
+        if not hasattr(self,'avg'):
+            self.calc_avg()
+        self.gamma=[]
+        self.beta=[]
+        for i,j in zip(self.Nelp,xrange(len(self.Nelp))):
+            Eavg=self.avg['E'][j]
+            self.gamma.append((self.mc2+Eavg)/self.mc2)
+            self.beta.append(numpy.sqrt(1.-1./self.gamma[-1]**2))
+        self.gamma=numpy.array(self.gamma)
+        self.beta=numpy.array(self.beta)
 
     def calc_minmax(self,pmin=5,pmax=95):
         '''
@@ -285,7 +281,6 @@ class plt:
         '''
         import numpy
 
-
         self.min=dict(x=[], xp=[], y=[], yp=[], E=[])
         self.max=dict(x=[], xp=[], y=[], yp=[], E=[])
 
@@ -327,11 +322,29 @@ class plt:
             i=self.Nelp[j]
             data=self[i]
 
-
             self.sigma.append([[numpy.mean( (data[n]-self.avg[n][j]) * (data[m] - self.avg[m][j]) ) for n in vals] for m in vals])
 
         self.sigma=numpy.array(self.sigma)
 
+    def calc_std(self):
+        '''
+        Calculates the beam sizes
+
+        '''
+
+        import numpy
+
+        if not hasattr(self,'sigma'):
+               self.calc_sigma()
+
+        vals=self._columns[:-1]
+
+        self.std={}
+
+        for j in xrange(len(vals)):
+            v=vals[j]
+            self.std[v]=numpy.sqrt(self.sigma[:,j,j])
+
     def calc_twiss(self):
         '''
         Calculates emittance, beta, alfa, gamma
@@ -350,6 +363,12 @@ class plt:
             self.twiss_eps.append([numpy.sqrt(numpy.linalg.det(self.sigma[j][i:i+2][:,i:i+2])) for i in (0,2,4)])
         self.twiss_eps=numpy.array(self.twiss_eps)
 
+        # Calculate normalized emittance:
+        # TODO: this is NOT correct normalization for longitudinal
+        self.twiss_eps_normed=self.twiss_eps.copy()
+        for i in xrange(3):
+            self.twiss_eps_normed[:,i]*=self.gamma*self.beta
+
         # Calculate beta:
         # This is a factor 10 different from what TraceWin plots
         self.twiss_beta = [[self.sigma[j][i][i]/self.twiss_eps[j,i/2] for i in (0,2,4)] for j in xrange(len(self.Nelp))]
@@ -359,12 +378,6 @@ class plt:
         self.twiss_alpha = [[-self.sigma[j][i][i+1]/self.twiss_eps[j,i/2] for i in (0,2,4)] for j in xrange(len(self.Nelp))]
         self.twiss_alpha = numpy.array(self.twiss_alpha)
 
-        # Calculate normalized emittance:
-        # TODO: this is NOT correct normalization for longitudinal
-        self.twiss_eps_normed=self.twiss_eps.copy()
-        for i in xrange(3):
-            self.twiss_eps_normed[:,i]*=self.gamma*self.beta
-