/****************************************************************************** * * $Id$ * * Copyright (C) 2006 Florian Pose, Ingenieurgemeinschaft IgH * * This file is part of the IgH EtherCAT Master. * * The IgH EtherCAT Master is free software; you can redistribute it * and/or modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * The IgH EtherCAT Master is distributed in the hope that it will be * useful, but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with the IgH EtherCAT Master; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * The right to use EtherCAT Technology is granted and comes free of * charge under condition of compatibility of product made by * Licensee. People intending to distribute/sell products based on the * code, have to sign an agreement to guarantee that products using * software based on IgH EtherCAT master stay compatible with the actual * EtherCAT specification (which are released themselves as an open * standard) as the (only) precondition to have the right to use EtherCAT * Technology, IP and trade marks. * *****************************************************************************/ /** \file EtherCAT finite state machines. */ /*****************************************************************************/ #include "globals.h" #include "fsm.h" #include "master.h" #include "mailbox.h" /*****************************************************************************/ void ec_fsm_master_start(ec_fsm_t *); void ec_fsm_master_broadcast(ec_fsm_t *); void ec_fsm_master_read_states(ec_fsm_t *); void ec_fsm_master_validate_vendor(ec_fsm_t *); void ec_fsm_master_validate_product(ec_fsm_t *); void ec_fsm_master_rewrite_addresses(ec_fsm_t *); void ec_fsm_master_configure_slave(ec_fsm_t *); void ec_fsm_master_scan_slaves(ec_fsm_t *); void ec_fsm_master_write_eeprom(ec_fsm_t *); void ec_fsm_startup_start(ec_fsm_t *); void ec_fsm_startup_broadcast(ec_fsm_t *); void ec_fsm_startup_scan(ec_fsm_t *); void ec_fsm_configuration_start(ec_fsm_t *); void ec_fsm_configuration_conf(ec_fsm_t *); void ec_fsm_slavescan_start(ec_fsm_t *); void ec_fsm_slavescan_address(ec_fsm_t *); void ec_fsm_slavescan_state(ec_fsm_t *); void ec_fsm_slavescan_base(ec_fsm_t *); void ec_fsm_slavescan_datalink(ec_fsm_t *); void ec_fsm_slavescan_eeprom_size(ec_fsm_t *); void ec_fsm_slavescan_eeprom_data(ec_fsm_t *); void ec_fsm_slaveconf_init(ec_fsm_t *); void ec_fsm_slaveconf_sync(ec_fsm_t *); void ec_fsm_slaveconf_preop(ec_fsm_t *); void ec_fsm_slaveconf_fmmu(ec_fsm_t *); void ec_fsm_slaveconf_sdoconf(ec_fsm_t *); void ec_fsm_slaveconf_saveop(ec_fsm_t *); void ec_fsm_slaveconf_op(ec_fsm_t *); void ec_fsm_sii_start_reading(ec_fsm_t *); void ec_fsm_sii_read_check(ec_fsm_t *); void ec_fsm_sii_read_fetch(ec_fsm_t *); void ec_fsm_sii_start_writing(ec_fsm_t *); void ec_fsm_sii_write_check(ec_fsm_t *); void ec_fsm_sii_write_check2(ec_fsm_t *); void ec_fsm_change_start(ec_fsm_t *); void ec_fsm_change_check(ec_fsm_t *); void ec_fsm_change_status(ec_fsm_t *); void ec_fsm_change_code(ec_fsm_t *); void ec_fsm_change_ack(ec_fsm_t *); void ec_fsm_change_check_ack(ec_fsm_t *); void ec_fsm_coe_down_start(ec_fsm_t *); void ec_fsm_coe_down_request(ec_fsm_t *); void ec_fsm_coe_down_check(ec_fsm_t *); void ec_fsm_coe_down_response(ec_fsm_t *); void ec_fsm_end(ec_fsm_t *); void ec_fsm_error(ec_fsm_t *); void ec_canopen_abort_msg(uint32_t); /*****************************************************************************/ /** Constructor. */ int ec_fsm_init(ec_fsm_t *fsm, /**< finite state machine */ ec_master_t *master /**< EtherCAT master */ ) { fsm->master = master; fsm->master_state = ec_fsm_master_start; fsm->master_slaves_responding = 0; fsm->master_slave_states = EC_SLAVE_STATE_UNKNOWN; fsm->master_validation = 0; ec_datagram_init(&fsm->datagram); if (ec_datagram_prealloc(&fsm->datagram, EC_MAX_DATA_SIZE)) { EC_ERR("Failed to allocate FSM datagram.\n"); return -1; } return 0; } /*****************************************************************************/ /** Destructor. */ void ec_fsm_clear(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_clear(&fsm->datagram); } /*****************************************************************************/ /** Resets the state machine. */ void ec_fsm_reset(ec_fsm_t *fsm /**< finite state machine */) { fsm->master_state = ec_fsm_master_start; fsm->master_slaves_responding = 0; fsm->master_slave_states = EC_SLAVE_STATE_UNKNOWN; } /*****************************************************************************/ /** Executes the current state of the state machine. */ void ec_fsm_execute(ec_fsm_t *fsm /**< finite state machine */) { fsm->master_state(fsm); } /*****************************************************************************/ /** Initializes the master startup state machine. */ void ec_fsm_startup(ec_fsm_t *fsm) { fsm->master_state = ec_fsm_startup_start; } /*****************************************************************************/ /** Returns the running state of the master startup state machine. \return non-zero if not terminated yet. */ int ec_fsm_startup_running(ec_fsm_t *fsm /**< Finite state machine */) { return fsm->master_state != ec_fsm_end && fsm->master_state != ec_fsm_error; } /*****************************************************************************/ /** Returns, if the master startup state machine terminated with success. \return non-zero if successful. */ int ec_fsm_startup_success(ec_fsm_t *fsm /**< Finite state machine */) { return fsm->master_state == ec_fsm_end; } /*****************************************************************************/ /** Initializes the master configuration state machine. */ void ec_fsm_configuration(ec_fsm_t *fsm) { fsm->master_state = ec_fsm_configuration_start; } /*****************************************************************************/ /** Returns the running state of the master configuration state machine. \return non-zero if not terminated yet. */ int ec_fsm_configuration_running(ec_fsm_t *fsm /**< Finite state machine */) { return fsm->master_state != ec_fsm_end && fsm->master_state != ec_fsm_error; } /*****************************************************************************/ /** Returns, if the master confuguration state machine terminated with success. \return non-zero if successful. */ int ec_fsm_configuration_success(ec_fsm_t *fsm /**< Finite state machine */) { return fsm->master_state == ec_fsm_end; } /****************************************************************************** * master startup state machine *****************************************************************************/ /** Master state: START. Starts with getting slave count and slave states. */ void ec_fsm_startup_start(ec_fsm_t *fsm) { ec_datagram_brd(&fsm->datagram, 0x0130, 2); ec_master_queue_datagram(fsm->master, &fsm->datagram); fsm->master_state = ec_fsm_startup_broadcast; } /*****************************************************************************/ /** Master state: BROADCAST. Processes the broadcast read slave count and slaves states. */ void ec_fsm_startup_broadcast(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; unsigned int i; ec_slave_t *slave; ec_master_t *master = fsm->master; if (datagram->state != EC_DATAGRAM_RECEIVED) { EC_ERR("Failed tor receive broadcast datagram.\n"); fsm->master_state = ec_fsm_error; return; } EC_INFO("Scanning bus.\n"); ec_master_clear_slaves(master); master->slave_count = datagram->working_counter; if (!master->slave_count) { // no slaves present -> finish state machine. fsm->master_state = ec_fsm_end; return; } // init slaves for (i = 0; i < master->slave_count; i++) { if (!(slave = (ec_slave_t *) kmalloc(sizeof(ec_slave_t), GFP_KERNEL))) { EC_ERR("Failed to allocate slave %i!\n", i); fsm->master_state = ec_fsm_error; return; } if (ec_slave_init(slave, master, i, i + 1)) { fsm->master_state = ec_fsm_error; return; } if (kobject_add(&slave->kobj)) { EC_ERR("Failed to add kobject.\n"); kobject_put(&slave->kobj); // free fsm->master_state = ec_fsm_error; return; } list_add_tail(&slave->list, &master->slaves); } // begin scanning of slaves fsm->slave = list_entry(master->slaves.next, ec_slave_t, list); fsm->slave_state = ec_fsm_slavescan_start; fsm->master_state = ec_fsm_startup_scan; fsm->master_state(fsm); // execute immediately return; } /*****************************************************************************/ /** Master state: SCAN. Executes the sub-statemachine for the scanning of a slave. */ void ec_fsm_startup_scan(ec_fsm_t *fsm /**< finite state machine */) { ec_master_t *master = fsm->master; ec_slave_t *slave = fsm->slave; fsm->slave_state(fsm); // execute slave state machine if (fsm->slave_state == ec_fsm_error) { EC_ERR("Slave scanning failed.\n"); fsm->master_state = ec_fsm_error; return; } if (fsm->slave_state != ec_fsm_end) return; // another slave to scan? if (slave->list.next != &master->slaves) { fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list); fsm->slave_state = ec_fsm_slavescan_start; fsm->slave_state(fsm); // execute immediately return; } EC_INFO("Bus scanning completed.\n"); ec_master_calc_addressing(master); fsm->master_state = ec_fsm_end; } /****************************************************************************** * master configuration state machine *****************************************************************************/ /** Master configuration state machine: START. */ void ec_fsm_configuration_start(ec_fsm_t *fsm /**< finite state machine */) { ec_master_t *master = fsm->master; if (list_empty(&master->slaves)) { fsm->master_state = ec_fsm_end; return; } // begin configuring slaves fsm->slave = list_entry(master->slaves.next, ec_slave_t, list); fsm->slave_state = ec_fsm_slaveconf_init; fsm->change_new = EC_SLAVE_STATE_INIT; fsm->change_state = ec_fsm_change_start; fsm->master_state = ec_fsm_configuration_conf; fsm->master_state(fsm); // execute immediately } /*****************************************************************************/ /** Master state: CONF. */ void ec_fsm_configuration_conf(ec_fsm_t *fsm /**< finite state machine */) { ec_master_t *master = fsm->master; ec_slave_t *slave = fsm->slave; fsm->slave_state(fsm); // execute slave's state machine if (fsm->slave_state == ec_fsm_error) { fsm->master_state = ec_fsm_error; return; } if (fsm->slave_state != ec_fsm_end) return; // another slave to configure? if (slave->list.next != &master->slaves) { fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list); fsm->slave_state = ec_fsm_slaveconf_init; fsm->change_new = EC_SLAVE_STATE_INIT; fsm->change_state = ec_fsm_change_start; fsm->master_state(fsm); // execute immediately return; } fsm->master_state = ec_fsm_end; } /****************************************************************************** * operation / idle state machine *****************************************************************************/ /** Master state: START. Starts with getting slave count and slave states. */ void ec_fsm_master_start(ec_fsm_t *fsm) { ec_datagram_brd(&fsm->datagram, 0x0130, 2); ec_master_queue_datagram(fsm->master, &fsm->datagram); fsm->master_state = ec_fsm_master_broadcast; } /*****************************************************************************/ /** Master state: BROADCAST. Processes the broadcast read slave count and slaves states. */ void ec_fsm_master_broadcast(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; unsigned int topology_change, states_change, i; ec_slave_t *slave; ec_master_t *master = fsm->master; if (datagram->state != EC_DATAGRAM_RECEIVED) { if (!master->device->link_state) { fsm->master_slaves_responding = 0; list_for_each_entry(slave, &master->slaves, list) { slave->online = 0; } } fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately return; } topology_change = (datagram->working_counter != fsm->master_slaves_responding); states_change = (EC_READ_U8(datagram->data) != fsm->master_slave_states); fsm->master_slave_states = EC_READ_U8(datagram->data); fsm->master_slaves_responding = datagram->working_counter; if (topology_change) { EC_INFO("%i slave%s responding.\n", fsm->master_slaves_responding, fsm->master_slaves_responding == 1 ? "" : "s"); if (master->mode == EC_MASTER_MODE_OPERATION) { if (fsm->master_slaves_responding == master->slave_count) { fsm->master_validation = 1; // start validation later } else { EC_WARN("Invalid slave count. Bus in tainted state.\n"); } } } if (states_change) { char states[25]; ec_state_string(fsm->master_slave_states, states); EC_INFO("Slave states: %s.\n", states); } // topology change in idle mode: clear all slaves and scan the bus if (topology_change && master->mode == EC_MASTER_MODE_IDLE) { EC_INFO("Scanning bus.\n"); ec_master_eoe_stop(master); ec_master_clear_slaves(master); master->slave_count = datagram->working_counter; if (!master->slave_count) { // no slaves present -> finish state machine. fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately return; } // init slaves for (i = 0; i < master->slave_count; i++) { if (!(slave = (ec_slave_t *) kmalloc(sizeof(ec_slave_t), GFP_ATOMIC))) { EC_ERR("Failed to allocate slave %i!\n", i); ec_master_clear_slaves(master); fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately return; } if (ec_slave_init(slave, master, i, i + 1)) { // freeing of "slave" already done ec_master_clear_slaves(master); fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately return; } if (kobject_add(&slave->kobj)) { EC_ERR("Failed to add kobject.\n"); kobject_put(&slave->kobj); // free ec_master_clear_slaves(master); fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately return; } list_add_tail(&slave->list, &master->slaves); } // begin scanning of slaves fsm->slave = list_entry(master->slaves.next, ec_slave_t, list); fsm->slave_state = ec_fsm_slavescan_start; fsm->master_state = ec_fsm_master_scan_slaves; fsm->master_state(fsm); // execute immediately return; } // fetch state from each slave fsm->slave = list_entry(master->slaves.next, ec_slave_t, list); ec_datagram_nprd(&fsm->datagram, fsm->slave->station_address, 0x0130, 2); ec_master_queue_datagram(master, &fsm->datagram); fsm->master_state = ec_fsm_master_read_states; } /*****************************************************************************/ /** Master action: PROC_STATES. Processes the slave states. */ void ec_fsm_master_action_process_states(ec_fsm_t *fsm /**< finite state machine */ ) { ec_master_t *master = fsm->master; ec_slave_t *slave; char old_state[25], new_state[25]; // check if any slaves are not in the state, they're supposed to be list_for_each_entry(slave, &master->slaves, list) { if (slave->error_flag || !slave->online || slave->requested_state == EC_SLAVE_STATE_UNKNOWN || slave->current_state == slave->requested_state) continue; ec_state_string(slave->current_state, old_state); ec_state_string(slave->requested_state, new_state); EC_INFO("Changing state of slave %i from %s to %s.\n", slave->ring_position, old_state, new_state); fsm->slave = slave; fsm->slave_state = ec_fsm_slaveconf_init; fsm->change_new = EC_SLAVE_STATE_INIT; fsm->change_state = ec_fsm_change_start; fsm->master_state = ec_fsm_master_configure_slave; fsm->master_state(fsm); // execute immediately return; } // Check, if EoE processing has to be started ec_master_eoe_start(master); if (master->mode == EC_MASTER_MODE_IDLE) { // nothing to configure. check for pending EEPROM write operations. list_for_each_entry(slave, &master->slaves, list) { if (!slave->new_eeprom_data) continue; if (!slave->online || slave->error_flag) { kfree(slave->new_eeprom_data); slave->new_eeprom_data = NULL; EC_ERR("Discarding EEPROM data, slave %i not ready.\n", slave->ring_position); continue; } // found pending EEPROM write operation. execute it! EC_INFO("Writing EEPROM of slave %i...\n", slave->ring_position); fsm->sii_offset = 0x0000; memcpy(fsm->sii_value, slave->new_eeprom_data, 2); fsm->sii_mode = 1; fsm->sii_state = ec_fsm_sii_start_writing; fsm->slave = slave; fsm->master_state = ec_fsm_master_write_eeprom; fsm->master_state(fsm); // execute immediately return; } } // nothing to do. restart master state machine. fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately } /*****************************************************************************/ /** Master action: Get state of next slave. */ void ec_fsm_master_action_next_slave_state(ec_fsm_t *fsm /**< finite state machine */) { ec_master_t *master = fsm->master; ec_slave_t *slave = fsm->slave; // is there another slave to query? if (slave->list.next != &master->slaves) { // process next slave fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list); ec_datagram_nprd(&fsm->datagram, fsm->slave->station_address, 0x0130, 2); ec_master_queue_datagram(master, &fsm->datagram); fsm->master_state = ec_fsm_master_read_states; return; } // all slave states read // check, if a bus validation has to be done if (fsm->master_validation) { fsm->master_validation = 0; list_for_each_entry(slave, &master->slaves, list) { if (slave->online) continue; // At least one slave is offline. validate! EC_INFO("Validating bus.\n"); fsm->slave = list_entry(master->slaves.next, ec_slave_t, list); fsm->master_state = ec_fsm_master_validate_vendor; fsm->sii_offset = 0x0008; // vendor ID fsm->sii_mode = 0; fsm->sii_state = ec_fsm_sii_start_reading; fsm->sii_state(fsm); // execute immediately return; } } ec_fsm_master_action_process_states(fsm); } /*****************************************************************************/ /** Master state: STATES. Fetches the AL- and online state of a slave. */ void ec_fsm_master_read_states(ec_fsm_t *fsm /**< finite state machine */) { ec_slave_t *slave = fsm->slave; ec_datagram_t *datagram = &fsm->datagram; uint8_t new_state; if (datagram->state != EC_DATAGRAM_RECEIVED) { fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately return; } // did the slave not respond to its station address? if (datagram->working_counter != 1) { if (slave->online) { slave->online = 0; EC_INFO("Slave %i: offline.\n", slave->ring_position); } ec_fsm_master_action_next_slave_state(fsm); return; } // slave responded new_state = EC_READ_U8(datagram->data); if (!slave->online) { // slave was offline before char cur_state[25]; slave->online = 1; slave->error_flag = 0; // clear error flag slave->current_state = new_state; ec_state_string(slave->current_state, cur_state); EC_INFO("Slave %i: online (%s).\n", slave->ring_position, cur_state); } else if (new_state != slave->current_state) { char old_state[25], cur_state[25]; ec_state_string(slave->current_state, old_state); ec_state_string(new_state, cur_state); EC_INFO("Slave %i: %s -> %s.\n", slave->ring_position, old_state, cur_state); slave->current_state = new_state; } ec_fsm_master_action_next_slave_state(fsm); } /*****************************************************************************/ /** Master state: VALIDATE_VENDOR. Validates the vendor ID of a slave. */ void ec_fsm_master_validate_vendor(ec_fsm_t *fsm /**< finite state machine */) { ec_slave_t *slave = fsm->slave; fsm->sii_state(fsm); // execute SII state machine if (fsm->sii_state == ec_fsm_error) { fsm->slave->error_flag = 1; EC_ERR("Failed to validate vendor ID of slave %i.\n", slave->ring_position); fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately return; } if (fsm->sii_state != ec_fsm_end) return; if (EC_READ_U32(fsm->sii_value) != slave->sii_vendor_id) { EC_ERR("Slave %i: invalid vendor ID!\n", slave->ring_position); fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately return; } // vendor ID is ok. check product code. fsm->master_state = ec_fsm_master_validate_product; fsm->sii_offset = 0x000A; // product code fsm->sii_mode = 0; fsm->sii_state = ec_fsm_sii_start_reading; fsm->sii_state(fsm); // execute immediately } /*****************************************************************************/ /** Master action: ADDRESS. Looks for slave, that have lost their configuration and writes their station address, so that they can be reconfigured later. */ void ec_fsm_master_action_addresses(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; while (fsm->slave->online) { if (fsm->slave->list.next == &fsm->master->slaves) { // last slave? fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately return; } // check next slave fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list); } EC_INFO("Reinitializing slave %i.\n", fsm->slave->ring_position); // write station address ec_datagram_apwr(datagram, fsm->slave->ring_position, 0x0010, 2); EC_WRITE_U16(datagram->data, fsm->slave->station_address); ec_master_queue_datagram(fsm->master, datagram); fsm->master_state = ec_fsm_master_rewrite_addresses; } /*****************************************************************************/ /** Master state: VALIDATE_PRODUCT. Validates the product ID of a slave. */ void ec_fsm_master_validate_product(ec_fsm_t *fsm /**< finite state machine */) { ec_slave_t *slave = fsm->slave; fsm->sii_state(fsm); // execute SII state machine if (fsm->sii_state == ec_fsm_error) { fsm->slave->error_flag = 1; EC_ERR("Failed to validate product code of slave %i.\n", slave->ring_position); fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately return; } if (fsm->sii_state != ec_fsm_end) return; if (EC_READ_U32(fsm->sii_value) != slave->sii_product_code) { EC_ERR("Slave %i: invalid product code!\n", slave->ring_position); EC_ERR("expected 0x%08X, got 0x%08X.\n", slave->sii_product_code, EC_READ_U32(fsm->sii_value)); fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately return; } // have all states been validated? if (slave->list.next == &fsm->master->slaves) { fsm->slave = list_entry(fsm->master->slaves.next, ec_slave_t, list); // start writing addresses to offline slaves ec_fsm_master_action_addresses(fsm); return; } // validate next slave fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list); fsm->master_state = ec_fsm_master_validate_vendor; fsm->sii_offset = 0x0008; // vendor ID fsm->sii_mode = 0; fsm->sii_state = ec_fsm_sii_start_reading; fsm->sii_state(fsm); // execute immediately } /*****************************************************************************/ /** Master state: ADDRESS. Checks, if the new station address has been written to the slave. */ void ec_fsm_master_rewrite_addresses(ec_fsm_t *fsm /**< finite state machine */ ) { ec_slave_t *slave = fsm->slave; ec_datagram_t *datagram = &fsm->datagram; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { EC_ERR("Failed to write station address on slave %i.\n", slave->ring_position); } if (fsm->slave->list.next == &fsm->master->slaves) { // last slave? fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately return; } // check next slave fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list); // Write new station address to slave ec_fsm_master_action_addresses(fsm); } /*****************************************************************************/ /** Master state: SCAN. Executes the sub-statemachine for the scanning of a slave. */ void ec_fsm_master_scan_slaves(ec_fsm_t *fsm /**< finite state machine */) { ec_master_t *master = fsm->master; ec_slave_t *slave = fsm->slave; fsm->slave_state(fsm); // execute slave state machine if (fsm->slave_state != ec_fsm_end && fsm->slave_state != ec_fsm_error) return; // another slave to fetch? if (slave->list.next != &master->slaves) { fsm->slave = list_entry(fsm->slave->list.next, ec_slave_t, list); fsm->slave_state = ec_fsm_slavescan_start; fsm->slave_state(fsm); // execute immediately return; } EC_INFO("Bus scanning completed.\n"); ec_master_calc_addressing(master); // determine initial states. list_for_each_entry(slave, &master->slaves, list) { if (ec_slave_is_coupler(slave)) { slave->requested_state = EC_SLAVE_STATE_OP; } else { if (master->mode == EC_MASTER_MODE_OPERATION) slave->requested_state = EC_SLAVE_STATE_PREOP; else slave->requested_state = EC_SLAVE_STATE_INIT; } } fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately } /*****************************************************************************/ /** Master state: CONF. Starts configuring a slave. */ void ec_fsm_master_configure_slave(ec_fsm_t *fsm /**< finite state machine */ ) { fsm->slave_state(fsm); // execute slave's state machine if (fsm->slave_state != ec_fsm_end && fsm->slave_state != ec_fsm_error) return; ec_fsm_master_action_process_states(fsm); } /*****************************************************************************/ /** Master state: EEPROM. */ void ec_fsm_master_write_eeprom(ec_fsm_t *fsm /**< finite state machine */) { ec_slave_t *slave = fsm->slave; fsm->sii_state(fsm); // execute SII state machine if (fsm->sii_state == ec_fsm_error) { fsm->slave->error_flag = 1; EC_ERR("Failed to write EEPROM contents to slave %i.\n", slave->ring_position); kfree(slave->new_eeprom_data); slave->new_eeprom_data = NULL; fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately return; } if (fsm->sii_state != ec_fsm_end) return; fsm->sii_offset++; if (fsm->sii_offset < slave->new_eeprom_size) { memcpy(fsm->sii_value, slave->new_eeprom_data + fsm->sii_offset, 2); fsm->sii_state = ec_fsm_sii_start_writing; fsm->sii_state(fsm); // execute immediately return; } // finished writing EEPROM EC_INFO("Finished writing EEPROM of slave %i.\n", slave->ring_position); kfree(slave->new_eeprom_data); slave->new_eeprom_data = NULL; // TODO: Evaluate new EEPROM contents! // restart master state machine. fsm->master_state = ec_fsm_master_start; fsm->master_state(fsm); // execute immediately return; } /****************************************************************************** * slave scan state machine *****************************************************************************/ /** Slave state: START_READING. First state of the slave state machine. Writes the station address to the slave, according to its ring position. */ void ec_fsm_slavescan_start(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; // write station address ec_datagram_apwr(datagram, fsm->slave->ring_position, 0x0010, 2); EC_WRITE_U16(datagram->data, fsm->slave->station_address); ec_master_queue_datagram(fsm->master, datagram); fsm->slave_state = ec_fsm_slavescan_address; } /*****************************************************************************/ /** Slave state: ADDRESS. */ void ec_fsm_slavescan_address(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { fsm->slave->error_flag = 1; fsm->slave_state = ec_fsm_error; EC_ERR("Failed to write station address of slave %i.\n", fsm->slave->ring_position); return; } // Read AL state ec_datagram_nprd(datagram, fsm->slave->station_address, 0x0130, 2); ec_master_queue_datagram(fsm->master, datagram); fsm->slave_state = ec_fsm_slavescan_state; } /*****************************************************************************/ /** Slave state: STATE. */ void ec_fsm_slavescan_state(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { fsm->slave->error_flag = 1; fsm->slave_state = ec_fsm_error; EC_ERR("Failed to read AL state of slave %i.\n", fsm->slave->ring_position); return; } slave->current_state = EC_READ_U8(datagram->data); if (slave->current_state & EC_ACK) { EC_WARN("Slave %i has state error bit set (0x%02X)!\n", slave->ring_position, slave->current_state); slave->current_state &= 0x0F; } // read base data ec_datagram_nprd(datagram, fsm->slave->station_address, 0x0000, 6); ec_master_queue_datagram(fsm->master, datagram); fsm->slave_state = ec_fsm_slavescan_base; } /*****************************************************************************/ /** Slave state: BASE. */ void ec_fsm_slavescan_base(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { fsm->slave->error_flag = 1; fsm->slave_state = ec_fsm_error; EC_ERR("Failed to read base data of slave %i.\n", slave->ring_position); return; } slave->base_type = EC_READ_U8 (datagram->data); slave->base_revision = EC_READ_U8 (datagram->data + 1); slave->base_build = EC_READ_U16(datagram->data + 2); slave->base_fmmu_count = EC_READ_U8 (datagram->data + 4); slave->base_sync_count = EC_READ_U8 (datagram->data + 5); if (slave->base_fmmu_count > EC_MAX_FMMUS) slave->base_fmmu_count = EC_MAX_FMMUS; // read data link status ec_datagram_nprd(datagram, slave->station_address, 0x0110, 2); ec_master_queue_datagram(slave->master, datagram); fsm->slave_state = ec_fsm_slavescan_datalink; } /*****************************************************************************/ /** Slave state: DATALINK. */ void ec_fsm_slavescan_datalink(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; uint16_t dl_status; unsigned int i; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { fsm->slave->error_flag = 1; fsm->slave_state = ec_fsm_error; EC_ERR("Failed to read DL status of slave %i.\n", slave->ring_position); return; } dl_status = EC_READ_U16(datagram->data); for (i = 0; i < 4; i++) { slave->dl_link[i] = dl_status & (1 << (4 + i)) ? 1 : 0; slave->dl_loop[i] = dl_status & (1 << (8 + i * 2)) ? 1 : 0; slave->dl_signal[i] = dl_status & (1 << (9 + i * 2)) ? 1 : 0; } // Start fetching EEPROM size fsm->sii_offset = 0x0040; // first category header fsm->sii_mode = 1; fsm->sii_state = ec_fsm_sii_start_reading; fsm->slave_state = ec_fsm_slavescan_eeprom_size; fsm->slave_state(fsm); // execute state immediately } /*****************************************************************************/ /** Slave state: EEPROM_SIZE. */ void ec_fsm_slavescan_eeprom_size(ec_fsm_t *fsm /**< finite state machine */) { ec_slave_t *slave = fsm->slave; uint16_t cat_type, cat_size; // execute SII state machine fsm->sii_state(fsm); if (fsm->sii_state == ec_fsm_error) { fsm->slave->error_flag = 1; fsm->slave_state = ec_fsm_error; EC_ERR("Failed to read EEPROM size of slave %i.\n", slave->ring_position); return; } if (fsm->sii_state != ec_fsm_end) return; cat_type = EC_READ_U16(fsm->sii_value); cat_size = EC_READ_U16(fsm->sii_value + 2); if (cat_type != 0xFFFF) { // not the last category fsm->sii_offset += cat_size + 2; fsm->sii_state = ec_fsm_sii_start_reading; fsm->sii_state(fsm); // execute state immediately return; } slave->eeprom_size = (fsm->sii_offset + 1) * 2; if (slave->eeprom_data) { EC_INFO("Freeing old EEPROM data on slave %i...\n", slave->ring_position); kfree(slave->eeprom_data); } if (!(slave->eeprom_data = (uint8_t *) kmalloc(slave->eeprom_size, GFP_ATOMIC))) { fsm->slave->error_flag = 1; fsm->slave_state = ec_fsm_error; EC_ERR("Failed to allocate EEPROM data on slave %i.\n", slave->ring_position); return; } // Start fetching EEPROM contents fsm->sii_offset = 0x0000; fsm->sii_mode = 1; fsm->sii_state = ec_fsm_sii_start_reading; fsm->slave_state = ec_fsm_slavescan_eeprom_data; fsm->slave_state(fsm); // execute state immediately } /*****************************************************************************/ /** Slave state: EEPROM_DATA. */ void ec_fsm_slavescan_eeprom_data(ec_fsm_t *fsm /**< finite state machine */) { ec_slave_t *slave = fsm->slave; uint16_t *cat_word, cat_type, cat_size; // execute SII state machine fsm->sii_state(fsm); if (fsm->sii_state == ec_fsm_error) { fsm->slave->error_flag = 1; fsm->slave_state = ec_fsm_error; EC_ERR("Failed to fetch EEPROM contents of slave %i.\n", slave->ring_position); return; } if (fsm->sii_state != ec_fsm_end) return; // 2 words fetched if (fsm->sii_offset + 2 <= slave->eeprom_size / 2) { // 2 words fit memcpy(slave->eeprom_data + fsm->sii_offset * 2, fsm->sii_value, 4); } else { // copy the last word memcpy(slave->eeprom_data + fsm->sii_offset * 2, fsm->sii_value, 2); } if (fsm->sii_offset + 2 < slave->eeprom_size / 2) { // fetch the next 2 words fsm->sii_offset += 2; fsm->sii_state = ec_fsm_sii_start_reading; fsm->sii_state(fsm); // execute state immediately return; } // Evaluate EEPROM contents slave->sii_alias = EC_READ_U16(slave->eeprom_data + 2 * 0x0004); slave->sii_vendor_id = EC_READ_U32(slave->eeprom_data + 2 * 0x0008); slave->sii_product_code = EC_READ_U32(slave->eeprom_data + 2 * 0x000A); slave->sii_revision_number = EC_READ_U32(slave->eeprom_data + 2 * 0x000C); slave->sii_serial_number = EC_READ_U32(slave->eeprom_data + 2 * 0x000E); slave->sii_rx_mailbox_offset = EC_READ_U16(slave->eeprom_data + 2 * 0x0018); slave->sii_rx_mailbox_size = EC_READ_U16(slave->eeprom_data + 2 * 0x0019); slave->sii_tx_mailbox_offset = EC_READ_U16(slave->eeprom_data + 2 * 0x001A); slave->sii_tx_mailbox_size = EC_READ_U16(slave->eeprom_data + 2 * 0x001B); slave->sii_mailbox_protocols = EC_READ_U16(slave->eeprom_data + 2 * 0x001C); // evaluate category data cat_word = (uint16_t *) slave->eeprom_data + 0x0040; while (EC_READ_U16(cat_word) != 0xFFFF) { cat_type = EC_READ_U16(cat_word) & 0x7FFF; cat_size = EC_READ_U16(cat_word + 1); switch (cat_type) { case 0x000A: if (ec_slave_fetch_strings(slave, (uint8_t *) (cat_word + 2))) goto end; break; case 0x001E: ec_slave_fetch_general(slave, (uint8_t *) (cat_word + 2)); break; case 0x0028: break; case 0x0029: if (ec_slave_fetch_sync(slave, (uint8_t *) (cat_word + 2), cat_size)) goto end; break; case 0x0032: if (ec_slave_fetch_pdo(slave, (uint8_t *) (cat_word + 2), cat_size, EC_TX_PDO)) goto end; break; case 0x0033: if (ec_slave_fetch_pdo(slave, (uint8_t *) (cat_word + 2), cat_size, EC_RX_PDO)) goto end; break; default: EC_WARN("Unknown category type 0x%04X in slave %i.\n", cat_type, slave->ring_position); } cat_word += cat_size + 2; } fsm->slave_state = ec_fsm_end; return; end: EC_ERR("Failed to analyze category data.\n"); fsm->slave->error_flag = 1; fsm->slave_state = ec_fsm_error; } /****************************************************************************** * slave configuration state machine *****************************************************************************/ /** Slave state: INIT. */ void ec_fsm_slaveconf_init(ec_fsm_t *fsm /**< finite state machine */) { ec_slave_t *slave = fsm->slave; ec_datagram_t *datagram = &fsm->datagram; const ec_sii_sync_t *sync; fsm->change_state(fsm); // execute state change state machine if (fsm->change_state == ec_fsm_error) { slave->error_flag = 1; fsm->slave_state = ec_fsm_error; return; } if (fsm->change_state != ec_fsm_end) return; // slave is now in INIT if (slave->current_state == slave->requested_state) { fsm->slave_state = ec_fsm_end; // successful return; } // check and reset CRC fault counters //ec_slave_check_crc(slave); // TODO: Implement state machine for CRC checking. if (!slave->base_sync_count) { // no sync managers fsm->slave_state = ec_fsm_slaveconf_preop; fsm->change_new = EC_SLAVE_STATE_PREOP; fsm->change_state = ec_fsm_change_start; fsm->change_state(fsm); // execute immediately return; } // configure sync managers ec_datagram_npwr(datagram, slave->station_address, 0x0800, EC_SYNC_SIZE * slave->base_sync_count); memset(datagram->data, 0x00, EC_SYNC_SIZE * slave->base_sync_count); list_for_each_entry(sync, &slave->sii_syncs, list) { if (sync->index >= slave->base_sync_count) { EC_ERR("Invalid sync manager configuration found!"); fsm->slave->error_flag = 1; fsm->slave_state = ec_fsm_error; return; } ec_sync_config(sync, slave, datagram->data + EC_SYNC_SIZE * sync->index); } ec_master_queue_datagram(fsm->master, datagram); fsm->slave_state = ec_fsm_slaveconf_sync; } /*****************************************************************************/ /** Slave state: SYNC. */ void ec_fsm_slaveconf_sync(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { slave->error_flag = 1; fsm->slave_state = ec_fsm_error; EC_ERR("Failed to set sync managers on slave %i.\n", slave->ring_position); return; } fsm->slave_state = ec_fsm_slaveconf_preop; fsm->change_new = EC_SLAVE_STATE_PREOP; fsm->change_state = ec_fsm_change_start; fsm->change_state(fsm); // execute immediately } /*****************************************************************************/ /** Slave state: PREOP. */ void ec_fsm_slaveconf_preop(ec_fsm_t *fsm /**< finite state machine */) { ec_slave_t *slave = fsm->slave; ec_master_t *master = fsm->master; ec_datagram_t *datagram = &fsm->datagram; unsigned int j; fsm->change_state(fsm); // execute state change state machine if (fsm->change_state == ec_fsm_error) { slave->error_flag = 1; fsm->slave_state = ec_fsm_error; return; } if (fsm->change_state != ec_fsm_end) return; // slave is now in PREOP if (slave->current_state == slave->requested_state) { fsm->slave_state = ec_fsm_end; // successful return; } if (!slave->base_fmmu_count) { // skip FMMU configuration if (list_empty(&slave->sdo_confs)) { // skip SDO configuration fsm->slave_state = ec_fsm_slaveconf_saveop; fsm->change_new = EC_SLAVE_STATE_SAVEOP; fsm->change_state = ec_fsm_change_start; fsm->change_state(fsm); // execute immediately return; } fsm->slave_state = ec_fsm_slaveconf_sdoconf; fsm->sdodata = list_entry(slave->sdo_confs.next, ec_sdo_data_t, list); fsm->coe_state = ec_fsm_coe_down_start; fsm->coe_state(fsm); // execute immediately return; } // configure FMMUs ec_datagram_npwr(datagram, slave->station_address, 0x0600, EC_FMMU_SIZE * slave->base_fmmu_count); memset(datagram->data, 0x00, EC_FMMU_SIZE * slave->base_fmmu_count); for (j = 0; j < slave->fmmu_count; j++) { ec_fmmu_config(&slave->fmmus[j], slave, datagram->data + EC_FMMU_SIZE * j); } ec_master_queue_datagram(master, datagram); fsm->slave_state = ec_fsm_slaveconf_fmmu; } /*****************************************************************************/ /** Slave state: FMMU. */ void ec_fsm_slaveconf_fmmu(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { fsm->slave->error_flag = 1; fsm->slave_state = ec_fsm_error; EC_ERR("Failed to set FMMUs on slave %i.\n", fsm->slave->ring_position); return; } // No CoE configuration to be applied? Jump to SAVEOP state. if (list_empty(&slave->sdo_confs)) { // skip SDO configuration // set state to SAVEOP fsm->slave_state = ec_fsm_slaveconf_saveop; fsm->change_new = EC_SLAVE_STATE_SAVEOP; fsm->change_state = ec_fsm_change_start; fsm->change_state(fsm); // execute immediately return; } fsm->slave_state = ec_fsm_slaveconf_sdoconf; fsm->sdodata = list_entry(slave->sdo_confs.next, ec_sdo_data_t, list); fsm->coe_state = ec_fsm_coe_down_start; fsm->coe_state(fsm); // execute immediately } /*****************************************************************************/ /** Slave state: SDOCONF. */ void ec_fsm_slaveconf_sdoconf(ec_fsm_t *fsm /**< finite state machine */) { fsm->coe_state(fsm); // execute CoE state machine if (fsm->coe_state == ec_fsm_error) { fsm->slave->error_flag = 1; fsm->slave_state = ec_fsm_error; return; } if (fsm->coe_state != ec_fsm_end) return; // Another SDO to configure? if (fsm->sdodata->list.next != &fsm->slave->sdo_confs) { fsm->sdodata = list_entry(fsm->sdodata->list.next, ec_sdo_data_t, list); fsm->coe_state = ec_fsm_coe_down_start; fsm->coe_state(fsm); // execute immediately return; } // All SDOs are now configured. // set state to SAVEOP fsm->slave_state = ec_fsm_slaveconf_saveop; fsm->change_new = EC_SLAVE_STATE_SAVEOP; fsm->change_state = ec_fsm_change_start; fsm->change_state(fsm); // execute immediately } /*****************************************************************************/ /** Slave state: SAVEOP. */ void ec_fsm_slaveconf_saveop(ec_fsm_t *fsm /**< finite state machine */) { fsm->change_state(fsm); // execute state change state machine if (fsm->change_state == ec_fsm_error) { fsm->slave->error_flag = 1; fsm->slave_state = ec_fsm_error; return; } if (fsm->change_state != ec_fsm_end) return; // slave is now in SAVEOP if (fsm->slave->current_state == fsm->slave->requested_state) { fsm->slave_state = ec_fsm_end; // successful return; } // set state to OP fsm->slave_state = ec_fsm_slaveconf_op; fsm->change_new = EC_SLAVE_STATE_OP; fsm->change_state = ec_fsm_change_start; fsm->change_state(fsm); // execute immediately } /*****************************************************************************/ /** Slave state: OP */ void ec_fsm_slaveconf_op(ec_fsm_t *fsm /**< finite state machine */) { fsm->change_state(fsm); // execute state change state machine if (fsm->change_state == ec_fsm_error) { fsm->slave->error_flag = 1; fsm->slave_state = ec_fsm_error; return; } if (fsm->change_state != ec_fsm_end) return; // slave is now in OP fsm->slave_state = ec_fsm_end; // successful } /****************************************************************************** * SII state machine *****************************************************************************/ /** SII state: START_READING. Starts reading the slave information interface. */ void ec_fsm_sii_start_reading(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; // initiate read operation if (fsm->sii_mode) { ec_datagram_npwr(datagram, fsm->slave->station_address, 0x502, 4); } else { ec_datagram_apwr(datagram, fsm->slave->ring_position, 0x502, 4); } EC_WRITE_U8 (datagram->data, 0x00); // read-only access EC_WRITE_U8 (datagram->data + 1, 0x01); // request read operation EC_WRITE_U16(datagram->data + 2, fsm->sii_offset); ec_master_queue_datagram(fsm->master, datagram); fsm->sii_state = ec_fsm_sii_read_check; } /*****************************************************************************/ /** SII state: READ_CHECK. Checks, if the SII-read-datagram has been sent and issues a fetch datagram. */ void ec_fsm_sii_read_check(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { EC_ERR("SII: Reception of read datagram failed.\n"); fsm->sii_state = ec_fsm_error; return; } fsm->sii_start = get_cycles(); // issue check/fetch datagram if (fsm->sii_mode) { ec_datagram_nprd(datagram, fsm->slave->station_address, 0x502, 10); } else { ec_datagram_aprd(datagram, fsm->slave->ring_position, 0x502, 10); } ec_master_queue_datagram(fsm->master, datagram); fsm->sii_state = ec_fsm_sii_read_fetch; } /*****************************************************************************/ /** SII state: READ_FETCH. Fetches the result of an SII-read datagram. */ void ec_fsm_sii_read_fetch(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { EC_ERR("SII: Reception of check/fetch datagram failed.\n"); fsm->sii_state = ec_fsm_error; return; } // check "busy bit" if (EC_READ_U8(datagram->data + 1) & 0x81) { // still busy... timeout? if (get_cycles() - fsm->sii_start >= (cycles_t) 10 * cpu_khz) { EC_ERR("SII: Read timeout.\n"); fsm->sii_state = ec_fsm_error; #if 0 EC_DBG("SII busy: %02X %02X %02X %02X\n", EC_READ_U8(datagram->data + 0), EC_READ_U8(datagram->data + 1), EC_READ_U8(datagram->data + 2), EC_READ_U8(datagram->data + 3)); #endif return; } // issue check/fetch datagram again if (fsm->sii_mode) { ec_datagram_nprd(datagram, fsm->slave->station_address, 0x502, 10); } else { ec_datagram_aprd(datagram, fsm->slave->ring_position, 0x502, 10); } ec_master_queue_datagram(fsm->master, datagram); return; } #if 0 EC_DBG("SII rec: %02X %02X %02X %02X - %02X %02X %02X %02X\n", EC_READ_U8(datagram->data + 0), EC_READ_U8(datagram->data + 1), EC_READ_U8(datagram->data + 2), EC_READ_U8(datagram->data + 3), EC_READ_U8(datagram->data + 6), EC_READ_U8(datagram->data + 7), EC_READ_U8(datagram->data + 8), EC_READ_U8(datagram->data + 9)); #endif // SII value received. memcpy(fsm->sii_value, datagram->data + 6, 4); fsm->sii_state = ec_fsm_end; } /*****************************************************************************/ /** SII state: START_WRITING. Starts reading the slave information interface. */ void ec_fsm_sii_start_writing(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; // initiate write operation ec_datagram_npwr(datagram, fsm->slave->station_address, 0x502, 8); EC_WRITE_U8 (datagram->data, 0x01); // enable write access EC_WRITE_U8 (datagram->data + 1, 0x02); // request write operation EC_WRITE_U32(datagram->data + 2, fsm->sii_offset); memcpy(datagram->data + 6, fsm->sii_value, 2); ec_master_queue_datagram(fsm->master, datagram); fsm->sii_state = ec_fsm_sii_write_check; } /*****************************************************************************/ /** SII state: WRITE_CHECK. */ void ec_fsm_sii_write_check(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { EC_ERR("SII: Reception of write datagram failed.\n"); fsm->sii_state = ec_fsm_error; return; } fsm->sii_start = get_cycles(); // issue check/fetch datagram ec_datagram_nprd(datagram, fsm->slave->station_address, 0x502, 2); ec_master_queue_datagram(fsm->master, datagram); fsm->sii_state = ec_fsm_sii_write_check2; } /*****************************************************************************/ /** SII state: WRITE_CHECK2. */ void ec_fsm_sii_write_check2(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { EC_ERR("SII: Reception of write check datagram failed.\n"); fsm->sii_state = ec_fsm_error; return; } if (EC_READ_U8(datagram->data + 1) & 0x82) { // still busy... timeout? if (get_cycles() - fsm->sii_start >= (cycles_t) 10 * cpu_khz) { EC_ERR("SII: Write timeout.\n"); fsm->sii_state = ec_fsm_error; return; } // issue check/fetch datagram again ec_master_queue_datagram(fsm->master, datagram); return; } if (EC_READ_U8(datagram->data + 1) & 0x40) { EC_ERR("SII: Write operation failed!\n"); fsm->sii_state = ec_fsm_error; return; } // success fsm->sii_state = ec_fsm_end; } /****************************************************************************** * state change state machine *****************************************************************************/ /** Change state: START. */ void ec_fsm_change_start(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; fsm->change_jiffies = jiffies; // write new state to slave ec_datagram_npwr(datagram, slave->station_address, 0x0120, 2); EC_WRITE_U16(datagram->data, fsm->change_new); ec_master_queue_datagram(fsm->master, datagram); fsm->change_state = ec_fsm_change_check; } /*****************************************************************************/ /** Change state: CHECK. */ void ec_fsm_change_check(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; if (datagram->state != EC_DATAGRAM_RECEIVED) { fsm->change_state = ec_fsm_error; EC_ERR("Failed to send state datagram to slave %i!\n", fsm->slave->ring_position); return; } if (datagram->working_counter != 1) { if (jiffies - fsm->change_jiffies >= 3 * HZ) { fsm->change_state = ec_fsm_error; EC_ERR("Failed to set state 0x%02X on slave %i: Slave did not" " respond.\n", fsm->change_new, fsm->slave->ring_position); return; } // repeat writing new state to slave ec_datagram_npwr(datagram, slave->station_address, 0x0120, 2); EC_WRITE_U16(datagram->data, fsm->change_new); ec_master_queue_datagram(fsm->master, datagram); return; } fsm->change_jiffies = jiffies; // read AL status from slave ec_datagram_nprd(datagram, slave->station_address, 0x0130, 2); ec_master_queue_datagram(fsm->master, datagram); fsm->change_state = ec_fsm_change_status; } /*****************************************************************************/ /** Change state: STATUS. */ void ec_fsm_change_status(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { fsm->change_state = ec_fsm_error; EC_ERR("Failed to check state 0x%02X on slave %i.\n", fsm->change_new, slave->ring_position); return; } slave->current_state = EC_READ_U8(datagram->data); if (slave->current_state == fsm->change_new) { // state has been set successfully fsm->change_state = ec_fsm_end; return; } if (slave->current_state & 0x10) { // state change error fsm->change_new = slave->current_state & 0x0F; EC_ERR("Failed to set state 0x%02X - Slave %i refused state change" " (code 0x%02X)!\n", fsm->change_new, slave->ring_position, slave->current_state); // fetch AL status error code ec_datagram_nprd(datagram, slave->station_address, 0x0134, 2); ec_master_queue_datagram(fsm->master, datagram); fsm->change_state = ec_fsm_change_code; return; } if (jiffies - fsm->change_jiffies >= 100 * HZ / 1000) { // 100ms // timeout while checking fsm->change_state = ec_fsm_error; EC_ERR("Timeout while setting state 0x%02X on slave %i.\n", fsm->change_new, slave->ring_position); return; } // still old state: check again ec_datagram_nprd(datagram, slave->station_address, 0x0130, 2); ec_master_queue_datagram(fsm->master, datagram); } /*****************************************************************************/ /** Application layer status messages. */ const ec_code_msg_t al_status_messages[] = { {0x0001, "Unspecified error"}, {0x0011, "Invalud requested state change"}, {0x0012, "Unknown requested state"}, {0x0013, "Bootstrap not supported"}, {0x0014, "No valid firmware"}, {0x0015, "Invalid mailbox configuration"}, {0x0016, "Invalid mailbox configuration"}, {0x0017, "Invalid sync manager configuration"}, {0x0018, "No valid inputs available"}, {0x0019, "No valid outputs"}, {0x001A, "Synchronisation error"}, {0x001B, "Sync manager watchdog"}, {0x001C, "Invalid sync manager types"}, {0x001D, "Invalid output configuration"}, {0x001E, "Invalid input configuration"}, {0x001F, "Invalid watchdog configuration"}, {0x0020, "Slave needs cold start"}, {0x0021, "Slave needs INIT"}, {0x0022, "Slave needs PREOP"}, {0x0023, "Slave needs SAVEOP"}, {0x0030, "Invalid DC SYNCH configuration"}, {0x0031, "Invalid DC latch configuration"}, {0x0032, "PLL error"}, {0x0033, "Invalid DC IO error"}, {0x0034, "Invalid DC timeout error"}, {0x0042, "MBOX EOE"}, {0x0043, "MBOX COE"}, {0x0044, "MBOX FOE"}, {0x0045, "MBOX SOE"}, {0x004F, "MBOX VOE"}, {} }; /*****************************************************************************/ /** Change state: CODE. */ void ec_fsm_change_code(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; uint32_t code; const ec_code_msg_t *al_msg; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { fsm->change_state = ec_fsm_error; EC_ERR("Reception of AL status code datagram failed.\n"); return; } if ((code = EC_READ_U16(datagram->data))) { for (al_msg = al_status_messages; al_msg->code; al_msg++) { if (al_msg->code != code) continue; EC_ERR("AL status message 0x%04X: \"%s\".\n", al_msg->code, al_msg->message); break; } if (!al_msg->code) EC_ERR("Unknown AL status code 0x%04X.\n", code); } // acknowledge "old" slave state ec_datagram_npwr(datagram, slave->station_address, 0x0120, 2); EC_WRITE_U16(datagram->data, slave->current_state); ec_master_queue_datagram(fsm->master, datagram); fsm->change_state = ec_fsm_change_ack; } /*****************************************************************************/ /** Change state: ACK. */ void ec_fsm_change_ack(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { fsm->change_state = ec_fsm_error; EC_ERR("Reception of state ack datagram failed.\n"); return; } fsm->change_jiffies = jiffies; // read new AL status ec_datagram_nprd(datagram, slave->station_address, 0x0130, 2); ec_master_queue_datagram(fsm->master, datagram); fsm->change_state = ec_fsm_change_check_ack; } /*****************************************************************************/ /** Change state: CHECK ACK. */ void ec_fsm_change_check_ack(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; ec_slave_state_t ack_state; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { fsm->change_state = ec_fsm_error; EC_ERR("Reception of state ack check datagram failed.\n"); return; } ack_state = EC_READ_U8(datagram->data); if (ack_state == slave->current_state) { fsm->change_state = ec_fsm_error; EC_INFO("Acknowleged state 0x%02X on slave %i.\n", slave->current_state, slave->ring_position); return; } if (jiffies - fsm->change_jiffies >= 100 * HZ / 1000) { // 100ms // timeout while checking slave->current_state = EC_SLAVE_STATE_UNKNOWN; fsm->change_state = ec_fsm_error; EC_ERR("Timeout while acknowleging state 0x%02X on slave %i.\n", fsm->change_new, slave->ring_position); return; } // reread new AL status ec_datagram_nprd(datagram, slave->station_address, 0x0130, 2); ec_master_queue_datagram(fsm->master, datagram); } /****************************************************************************** * CoE state machine *****************************************************************************/ /** CoE state: DOWN_START. */ void ec_fsm_coe_down_start(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; ec_sdo_data_t *sdodata = fsm->sdodata; uint8_t *data; EC_INFO("Downloading SDO 0x%04X:%i to slave %i.\n", sdodata->index, sdodata->subindex, slave->ring_position); if (slave->sii_rx_mailbox_size < 6 + 10 + sdodata->size) { EC_ERR("SDO fragmenting not supported yet!\n"); fsm->coe_state = ec_fsm_error; return; } if (!(data = ec_slave_mbox_prepare_send(slave, datagram, 0x03, sdodata->size + 10))) { fsm->coe_state = ec_fsm_error; return; } EC_WRITE_U16(data, 0x2 << 12); // SDO request EC_WRITE_U8 (data + 2, (0x1 // size specified | 0x1 << 5)); // Download request EC_WRITE_U16(data + 3, sdodata->index); EC_WRITE_U8 (data + 5, sdodata->subindex); EC_WRITE_U32(data + 6, sdodata->size); memcpy(data + 10, sdodata->data, sdodata->size); ec_master_queue_datagram(fsm->master, datagram); fsm->coe_state = ec_fsm_coe_down_request; } /*****************************************************************************/ /** CoE state: DOWN_REQUEST. */ void ec_fsm_coe_down_request(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { fsm->coe_state = ec_fsm_error; EC_ERR("Reception of CoE download request failed.\n"); return; } fsm->coe_start = get_cycles(); ec_slave_mbox_prepare_check(slave, datagram); // can not fail. ec_master_queue_datagram(fsm->master, datagram); fsm->coe_state = ec_fsm_coe_down_check; } /*****************************************************************************/ /** CoE state: DOWN_CHECK. */ void ec_fsm_coe_down_check(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { fsm->coe_state = ec_fsm_error; EC_ERR("Reception of CoE mailbox check datagram failed.\n"); return; } if (!ec_slave_mbox_check(datagram)) { if (get_cycles() - fsm->coe_start >= (cycles_t) 100 * cpu_khz) { fsm->coe_state = ec_fsm_error; EC_ERR("Timeout while checking SDO configuration on slave %i.\n", slave->ring_position); return; } ec_slave_mbox_prepare_check(slave, datagram); // can not fail. ec_master_queue_datagram(fsm->master, datagram); return; } // Fetch response ec_slave_mbox_prepare_fetch(slave, datagram); // can not fail. ec_master_queue_datagram(fsm->master, datagram); fsm->coe_state = ec_fsm_coe_down_response; } /*****************************************************************************/ /** CoE state: DOWN_RESPONSE. */ void ec_fsm_coe_down_response(ec_fsm_t *fsm /**< finite state machine */) { ec_datagram_t *datagram = &fsm->datagram; ec_slave_t *slave = fsm->slave; uint8_t *data, mbox_prot; size_t rec_size; ec_sdo_data_t *sdodata = fsm->sdodata; if (datagram->state != EC_DATAGRAM_RECEIVED || datagram->working_counter != 1) { fsm->coe_state = ec_fsm_error; EC_ERR("Reception of CoE download response failed.\n"); return; } if (!(data = ec_slave_mbox_fetch(slave, datagram, &mbox_prot, &rec_size))) { fsm->coe_state = ec_fsm_error; return; } if (mbox_prot != 0x03) { // CoE EC_WARN("Received mailbox protocol 0x%02X as response.\n", mbox_prot); fsm->coe_state = ec_fsm_error; return; } if (rec_size < 6) { fsm->coe_state = ec_fsm_error; EC_ERR("Received data is too small (%i bytes):\n", rec_size); ec_print_data(data, rec_size); return; } if (EC_READ_U16(data) >> 12 == 0x2 && // SDO request EC_READ_U8 (data + 2) >> 5 == 0x4) { // abort SDO transfer request fsm->coe_state = ec_fsm_error; EC_ERR("SDO download 0x%04X:%X (%i bytes) aborted on slave %i.\n", sdodata->index, sdodata->subindex, sdodata->size, slave->ring_position); if (rec_size < 10) { EC_ERR("Incomplete Abort command:\n"); ec_print_data(data, rec_size); } else ec_canopen_abort_msg(EC_READ_U32(data + 6)); return; } if (EC_READ_U16(data) >> 12 != 0x3 || // SDO response EC_READ_U8 (data + 2) >> 5 != 0x3 || // Download response EC_READ_U16(data + 3) != sdodata->index || // index EC_READ_U8 (data + 5) != sdodata->subindex) { // subindex fsm->coe_state = ec_fsm_error; EC_ERR("SDO download 0x%04X:%X (%i bytes) failed:\n", sdodata->index, sdodata->subindex, sdodata->size); EC_ERR("Invalid SDO download response at slave %i!\n", slave->ring_position); ec_print_data(data, rec_size); return; } fsm->coe_state = ec_fsm_end; // success } /*****************************************************************************/ /** SDO abort messages. The "abort SDO transfer request" supplies an abort code, which can be translated to clear text. This table does the mapping of the codes and messages. */ const ec_code_msg_t sdo_abort_messages[] = { {0x05030000, "Toggle bit not changed"}, {0x05040000, "SDO protocol timeout"}, {0x05040001, "Client/Server command specifier not valid or unknown"}, {0x05040005, "Out of memory"}, {0x06010000, "Unsupported access to an object"}, {0x06010001, "Attempt to read a write-only object"}, {0x06010002, "Attempt to write a read-only object"}, {0x06020000, "This object does not exist in the object directory"}, {0x06040041, "The object cannot be mapped into the PDO"}, {0x06040042, "The number and length of the objects to be mapped would" " exceed the PDO length"}, {0x06040043, "General parameter incompatibility reason"}, {0x06040047, "Gerneral internal incompatibility in device"}, {0x06060000, "Access failure due to a hardware error"}, {0x06070010, "Data type does not match, length of service parameter does" " not match"}, {0x06070012, "Data type does not match, length of service parameter too" " high"}, {0x06070013, "Data type does not match, length of service parameter too" " low"}, {0x06090011, "Subindex does not exist"}, {0x06090030, "Value range of parameter exceeded"}, {0x06090031, "Value of parameter written too high"}, {0x06090032, "Value of parameter written too low"}, {0x06090036, "Maximum value is less than minimum value"}, {0x08000000, "General error"}, {0x08000020, "Data cannot be transferred or stored to the application"}, {0x08000021, "Data cannot be transferred or stored to the application" " because of local control"}, {0x08000022, "Data cannot be transferred or stored to the application" " because of the present device state"}, {0x08000023, "Object dictionary dynamic generation fails or no object" " dictionary is present"}, {} }; /*****************************************************************************/ /** Outputs an SDO abort message. */ void ec_canopen_abort_msg(uint32_t abort_code) { const ec_code_msg_t *abort_msg; for (abort_msg = sdo_abort_messages; abort_msg->code; abort_msg++) { if (abort_msg->code == abort_code) { EC_ERR("SDO abort message 0x%08X: \"%s\".\n", abort_msg->code, abort_msg->message); return; } } EC_ERR("Unknown SDO abort code 0x%08X.\n", abort_code); } /****************************************************************************** * Common state functions *****************************************************************************/ /** State: ERROR. */ void ec_fsm_error(ec_fsm_t *fsm /**< finite state machine */) { } /*****************************************************************************/ /** State: END. */ void ec_fsm_end(ec_fsm_t *fsm /**< finite state machine */) { } /*****************************************************************************/