
Naming – architecture & code
understand, compile, test, run & more

by lars.johansson@ess.eu, ICS Software

Table of Contents
Naming – architecture & code..1

Introduction..1
Getting started..2
Understand...3

Big picture...3
Names & Structures..3
Rules...4
Domain model & Example...5
Database...5

Get up & running..7
Database...7
Application...8
Compile..8
Test...8
Run...9

Architecture & code..9
Architecture mapped to code..10
A request mapped to code...11

Implementation..12
ESS Naming Convention..12
Beans...13
REST API..13

Excel...15
Open API & Swagger UI..16

Business logic..16
Persistence logic..16
Tests...16

Integration tests with Docker containers..17
How to go about tasks..19
Repository..19

Branch handling..19
Deploy...19

Reference...19

Introduction
The purpose of this document is to help development and maintenance of, and is link between
design and code for, Naming backend, which is implementation of ESS Naming Convention.

This document will give introduction to architecture and code in Naming backend. The goal is to be
able to understand, compile, test, run application & more. More includes working with Naming and
database, checkout new branch, do something and/or perform a task, test, commit, push, deploy.

1

mailto:lars.johansson@ess.eu

Getting started
In various places are framed boxes with information that is noteworthy and may help understanding

First set of sections of this document is aimed at understanding application from various
perspectives.

• Understand – big picture – focus on high-level understanding without going into details.
Having a mental picture of where things belong will help going through rest of document.

• Understand – get up & running – is aimed at being able to compile, test, run application and
database.

• Understand – architecture & code – will go into detail about architecture of application, how
a client call to Naming REST API is mapped into code and how the call flows through the
code. Different layers and parts of code are covered with purposes and explanations.

Next set of sections is on implementation.

• ESS Naming Convention – details rules and implementation of rules for names & structures.
This is core part of Naming.

• REST API – about requests to application that can be made and is how a client interacts with
application.

• Persistence model & mapping – how application maps information to persistence model
which is used for storage.

• Test – about unit, integration and manual tests.

Additional sections give help to how tasks may be approached together, usage of Gitlab together
with references. This document mentions, but is not about, authentication and authorization.

It is assumed that

• reader has access to Git repository for Naming backend

◦ https://gitlab.esss.lu.se/ics-software/naming-backend

▪ /folder/subfolder/file path in repository

• reader is familiar with or willing to learn!

◦ Git & Gitlab, Java, SQL, Maven, Docker

◦ documents

▪ brief introduction, cheat sheet, excel guide /docs/about/

2

Note!

Text that is noteworthy, summary, help & more

https://gitlab.esss.lu.se/ics-software/naming-backend

To set up development environment

/README.md

To learn about refactoring (optionally)

/docs/developer/naming-convention-tool/

/docs/developer/refactoring/

At this point, it is assumed that repository is available and, if intention is to compile and run code,
that development environment is set up with required tools available.

Understand

Big picture

Names & Structures

ESS Name System structure Device structure

Which part of the facility does
the device provide service to?

What kind of service does the
device provide?

Must refer to
System structure

1 System Group 1 Discipline

May refer to
Device structure

2 System 2 Device Group

May have index
for instance

3 Subsystem 3 Device Type

ESS Name = System Group

System Group + Device Type + Index

System

System + Device Type + Index

Subsystem

Subsystem + Device Type + Index

3

Names & Structures, Rules – follow from ESS Naming Convention

A package containing “old” in its name, relates to refactoring of Naming and and
implementation of previous functionality. This may be removed at any time.

Rules

Rules for structures

Structures

System, Subsystem, Discipline, Device Type must have mnemonic

System Group may have mnemonic

Device Group must not have mnemonic

A mnemonic is a string of characters and numbers that must be unique in its
namespace (rules apply)

Rules for names

Names

System structure

System structure + Device structure + Index

A name

system structure mnemonic path

system structure mnemonic path : device structure mnemonic path – index

System structure mnemonic path

if System Group then System Group mnemonic

if System then System mnemonic

if Subsystem then System mnemonic – Subsystem mnemonic

Device structure mnemonic path

if Device Type then Discipline mnemonic – Device Type mnemonic

Index

a string of characters and numbers (rules apply)

Furthermore, there are rules for mnemonics and index.

4

Domain model & Example
System structure System Group Accelerator Level 1

System Accelerator to Target A2T Level 2

Subsystem 01 Phase Reference Line 010PRL Level 3

Device structure Discipline RF System RFS Level 1

Device Group Phase Reference Line Level 2

Device Type Phase Reference Line Tap PRLTap Level 3

ESS name Index 054

ESS name A2T-010PRL:RFS-PRLTap-054

Database
Database is designed to correspond to domain model.

A name must refer to exactly one System structure, either level 1 or level 2 or level 3.

A name may refer to one Device structure, level 3.

5

System Group SubsystemSystem

ESS Name

Device TypeDevice TypeDevice Type

Accelerator
[NULL]

Phase Reference Line
[NULL]

RF System
RFS

Phase Reference Line Tap
PRLTap

A2T-010PRL:RFS-PRLTap-054

Accelerator to Target
A2T

01 Phase Reference Line
010PRL

Core attributes are uuid, mnemonic, instance index together with status, latest, deleted. Each table
keeps history for its entries. In addition, an entry also has username, date and comment associated
with each change.

See other folders and files for information about tables and columns (also migration).

• docs/developer/refactoring/background_thoughts_database

6

systemgroup

id

version

uuid

name

mnemonic

mnemonic_equivalence

description

status

latest

deleted

...

system
id

version

uuid

parent_uuid

name

mnemonic

mnemonic_equivalence

description

status

latest

deleted

...

subsystem

id

version

uuid

parent_uuid

name

mnemonic

mnemonic_equivalence

description

status

latest

deleted

...

discipline

id

version

uuid

name

mnemonic

mnemonic_equivalence

description

status

latest

deleted

...

devicegroup

id

version

uuid

parent_uuid

name

mnemonic

mnemonic_equivalence

description

status

latest

deleted

...

devicetype

id

version

uuid

parent_uuid

name

mnemonic

mnemonic_equivalence

description

status

latest

deleted

...

name
id

version

uuid

systemgroup_uuid

system_uuid

subsystem_uuid

devicetype_uuid

instance_index

convention_name

convention_name_equivalence

description

status

latest

deleted

...

Get up & running

Database
To consider

• database version & tables, columns

◦ in particular if/when Flyway is not enabled. Then it’s necessary to ensure proper
database version with proper scripts are run.

• content when running and/or testing application.

◦ empty vs content

◦ backup vs prepopulated

◦ example content or fill yourself through REST API (json or Excel)

• see

◦ /src/test/resources/db/data/

◦ /src/test/resources/db/migration/schema_migration/

Database needs to be up-to-date when testing and running application. In addition, it needs to have
content in order to be useful. This can be ensured in various ways.

• backup

• scripts without data

• scripts with data

• Excel

• integration tests

• do it yourself

7

It is recommended to have local docker-compose files for various purposes, e.g.
- docker-compose-local.yml
- docker-compose-local-database.yml

.gitignore contains docker-compose-local* → allows for local docker-compose files that
are not committed

See docker-compose.yml, docker-compose-integrationtest.yml for examples.

Option to have local docker-compose file to
- set database to desired state (version) and content
- set environment variables for database and application

Make sure passwords and other sensitive information are not committed.

Application

Compile
/README.md

Test
/README.md

Test may be done in various ways.

• Unit tests

• Integration tests with Docker containers

◦ Tests may be debugged. Docker containers, application and database may be inspected
for logs and content.

• Run application and database, and perform operations to Create Read Update Delete +
Approve Cancel Reject.

• In local computer or at test server

8

It is possible to use docker-compose files for this purpose, e.g.

(1) – computer path ./src/test/resources/db/schema_migration
(2) – docker container path /docker-entrypoint-initdb.d

 postgres:
 volumes:
 - (1)/V1__Initial.sql:(2)/V1__Initial.sql
 - (1)/V2__Commit_Msg_to_Device.sql:(2)/V2__Commit_Msg_to_Device.sql
 - (1)/V3__Notification_CC_List.sql:(2)/V3__Notification_CC_List.sql
 - (1)/V4__Schema_data_migration.sql:(2)/V4__Schema_data_migration.sql

(1) – computer path ./src/test/resources/db/data
(2) – docker container path /docker-entrypoint-initdb.d

 postgres:
 volumes:
 - (1)/dump-discs_names_namesit.sql:(2)/dump-discs_names_namesit.sql

It is possible to use Excel for this purpose, i.e.

- /src/main/resources/static/templates/StructureElementCommand.xlsx
- /src/main/resources/static/templates/NameElementCommand.xlsx

It is possible to use (Docker) integration tests for this purpose. By debugging an integration test,
database content can be exported or backup taken at a debug point.

Run
/README.md

Architecture & code
Naming backend is a web application implemented as a REST style web service backed by a
relational database. The web service is implemented as a Spring Boot application and the database
is available as PostgreSQL.

At start of application, various tasks such as setting up configuration and authentication /
authorization is done. Depending on how application is started, database may also be started.

Application performs tasks for names and structures. There are Create Read Update Delete +
Approve Cancel Reject for names and structures. A task is usually initiated by a client which can be
both user and non-user.

9

InterfaceInterfaceInterfaceInterfaceInterface

ControllerControllerControllerControllerAPI layer

Business logicBusiness logicBusiness logicBusiness logicBusiness logic

Persistence logicPersistence logicPersistence logicPersistence logicPersistence logic

Naming
database

InterfaceInterfaceInterfaceInterfaceConfiguration Authentication
Authorization

Application

InterfaceInterfaceInterfaceInterfaceBeans

InterfaceInterfaceInterfaceInterfaceUtility

In general, a request from a client to Naming backend is defined in an interface and implemented in
API layer. Such separation is useful for version handling of request URLs. There are also URLs that
are not versioned, e.g. healthcheck. Some URLs are protected in which case processing passes
through authentication and authorization.

Flow for handling a request is that the API layer implementation splits request into parts and handle
each in sequential order. A request to store information is split into parts to make sure data may be
read, that it is validated, then stored and finally that result of request is returned. Parts in this
process, validation and storing, are implemented as Business logic. Handling storage, including
having code that matches database and content, is available as Persistence logic. There are utilities
to support mentioned layers, e.g. handling of input and output, error.

Validation is split into parts that handle input itself and data being correct.

Architecture mapped to code
Examples of mapping for parts of application, from architecture to code.

Piece of architecture What Package

Application org.openepics.names

ESS Naming Convention Rules
Validation

org.openepics.names.utility
ESSNamingConvention
NamingConvention
ValidateNameElementUtil
ValidateStructureElementUtil
ValidateUtil

Beans REST API
Definition
Data

org.openepics.names.rest.beans

Interface REST API
Definition
Requests

org.openepics.names.rest.api.v1
INames
IStructures

API layer REST API
Implementation
Requests

org.openepics.names.rest.controller
NamesController
StructuresController

Business logic Service
Coordination

org.openepics.names.service
NamesService
StructuresService

Persistence logic Repository
Storage
Model & mapping

org.openepics.names.repository
org.openepics.names.repository.model

Unit test Test of utilities org.openepics.names.util

Integration test Test of
application &
database

org.openepics.names.docker
org.openepics.names.docker.complex

10

Parts of application, including above mentioned, are explored in more detail in sections that follow.

Business logic contains necessary means to handle transactions that are necessary. This is done in
close cooperation with Persistence logic that handles storage.

A request mapped to code

11

E.g. a request to create new names by uploading Excel sheet (simplified)

INames Interface
createNames(MultipartFile)

NamesController API layer
createNames(MultipartFile)

ExcelUtil.hasExcelFormat
ExcelUtil.excelToNameElementCommands
NamesService.validateNamesCreate
NamesService.createNames
return ExcelUtil.nameElementsToExcel

NamesService Business logic
validateNamesCreate(List<NameElementCommand>)
for each element

validateNamesCreate(NameElementCommand)
ValidateNameElementUtil.validateNameElementInputCreate
ValidateNameElementUtil.validateNameElementDataCreate

createNames(List<NameElementCommand>)
for each element

createName(NameElementCommand)
name = …
NameRepository.createName
return createdName

NameRepository Persistence logic
createName(Name)

EntityManager.persist(name)

ExcelUtil Utility
hasExcelFormat(MultipartFile)
excelToNameElementCommands(InputStream)

ValidateNameElementUtil Utility
validateNameElementInputCreate(NameElementCommand)
validateNameElementDataCreate(NameElementCommand)

Validation of data is tightly matched to ESS Naming Convention.

Core part of application is handling ESS Naming Convention

Rules
org.openepics.names.utility

ESSNamingConvention
NamingConvention

Validation use of rules
org.openepics.names.utility

ValidateNameElementUtil
ValidateStructureElementUtil
ValidateUtil

Integration tests with Docker containers are core to test of implementation

Implementation

ESS Naming Convention
The implementation of ESS Name Convention is core of Naming application. This ensures that
names and structures follow rules which are interpretations of ESS Naming Convention into code.

/src/main/java/

org.openepics.names.util.EssNamingConvention implementation
org.openepics.names.util.NamingConvention definition

Rules & methods

equivalenceClassRepresentative Return equivalence class representative
for given name. This is used to ensure
uniqueness of names when treating
similar looking names, e.g. 0 vs. O, 1
vs. l treated as as equal.

isInstanceIndexValid Return if the convention name's instance
index is valid according to convention
rules, in the context of system
structure and device structure.

isMnemonicPathValid Return if mnemonic path is valid within
the application according to the
convention rules.

isMnemonicRequired Return if the mnemonic is required or if
it can be null, i.e. mnemonic not part
of the name.

validateMnemonic Return validation for given type and
mnemonic according to convention rules.

The rules are applied at time of Create Update + Approve Cancel Reject and are called from
Business logic. The actual implementation is Business logic → validation → rules.

There are different kinds of validation that each serves a purposes.

• input, by itself. E.g. value present, proper format for uuid

• data, according to rules, by itself. E.g. mnemonic (System structure, Device structure),
instance index (Name)

• data, according to rules, in relation to other data. E.g. mnemonic not present, no duplicates
in mnemonic path, instance index not present

Validation

/src/main/java/

org.openepics.names.util.ValidateNameElementUtil names
org.openepics.names.util.ValidteStructureElementUtil structures
org.openepics.names.util.ValidateUtil common

12

Beans
Beans encapsulate content received from and sent to Naming client.

/src/main/java/

org.openepics.names.beans
org.openepics.names.beans.element
org.openepics.names.response

REST API
REST API is definition and implementation of what can be done from client perspective. It is split
into parts, Interface and API layer. This code handles request and reply for Naming.

First and foremost are names and structures. In addition, there are options to handle healthcheck,
report and verification of data. Some of those options need not be versioned while names and
structures need to, and are, being versioned.

Operations for names and structures are Create Read Update Delete + Approve Cancel Reject.

Introduction

/docs/about/

naming_rest_api_brief_introduction

naming_rest_api_cheat_sheet

In addition to REST API endpoints listed in above document, there are also endpoints available for
validation for names and structures. Such endpoints are public and available although not visible in
Swagger UI. Reason for validation endpoints not being visible is that they may cause confusion for
end users. Mentioned endpoints are however used in implementation of POST, PUT, PATCH,
DELETE methods behind the scenes and for Docker integration tests.

Validation endpoints

Names

Path /api/v1/names

HTTP method Path & Query string Description
GET /validatecreate Return if names are valid to create by list of name

element commands. If names are valid to create,
successful create of names can be expected.

GET /validateupdate Return if names are valid to update by list of
name elements. If names are valid to update,
successful update of names can be expected.

13

naming_rest_api_brief_introduction contains list of REST API endpoints with paths,
description, authorization (if required).

GET /validateupdate Return if names are valid to delete by list of name
element commands. If names are valid to delete,
successful delete of names can be expected.

Structures

Path /api/v1/structures

HTTP method Path & Query string Description
GET /validatecreate Return if structures are valid to create (propose)

by list of structure element commands. If
structures are valid to create, successful create of
structures can be expected.

GET /validateupdate Return if structures are valid to update (propose)
by list of structure element commands. If
structures are valid to update, successful update
of structures can be expected.

GET /validatedelete Return if structures are valid to delete (propose)
by list of structure element commands. If
structures are valid to delete, successful delete of
structures can be expected.

GET /validateapprove Return if structures are valid to approve by list of
structure element commands. If structures are
valid to approve, successful approve of structures
can be expected.

GET /validatecancel Return if structures are valid to cancel by list of
structure element commands. If structures are
valid to cancel, successful cancel of structures
can be expected.

GET /validatereject Return if structures are valid to reject by list of
structure element commands. If structures are
valid to reject, successful reject of structures can
be expected.

Definition

/src/main/java/

org.openepics.names.rest.api.v1

Implementation

/src/main/java/

org.openepics.names.rest.api.controller

Upon request, information is received from path and query string in URL in combination with json
or Excel. Upon completion of request, information in reply is sent with json or Excel.

For Naming to act upon information – create, update, delete + approve, cancel, reject – not all of
available information is required. It is enough for client to send subset of information. E.g. to create
a name, a client may send uuid for references to System structure and Device structure, instance
index and comment. Naming will then construct name based on received (command) information.

14

When sending reply to client from Naming, more information such as generated name, timestamp
and other values is included in reply beside information in request.

The same applies for all requests and replies, whether information is sent with json or Excel.

Objects in request that contain information to act upon

/src/main/java/

org.openepics.names.rest.beans.element.NameElementCommand

org.openepics.names.rest.beans.element.StructureElementCommand

Objects in reply that contain information

/src/main/java/

org.openepics.names.rest.beans.element.NameElement

org.openepics.names.rest.beans.element.StructureElement

Other responsibilities handled in REST API

• authentication & authorization

• error handling

Excel
Guide to use of Excel to upload names and structures to Naming together with download of names
and structures from Naming is available together with Excel templates. Columns in templates
correspond to command objects.

Guide

/docs/about/

naming_rest_api_excel_guide

Templates

/src/main/resources/static/templates/

NameElementCommand.xlsx

StructureElementCommand.xlsx

For upload requests that contain Excel, reply contain Excel corresponding to above. Such Excel
template is not available but is generated. For download requests that contain Excel, such templates
are also not available but is generated.

API layer calls Excel utility methods to read names and structures from Excel or write names and
structures to Excel.

15

API layer

/src/main/java/

org.openepics.names.rest.controller.NamesController

org.openepics.names.rest.controller.StructuresController

Excel utility

/src/main/java/

org.openepics.names.rest.util.ExcelUtil

Open API & Swagger UI
REST API documentation (part of) is available through Swagger UI. This is set up in definition of
REST API endpoints. Such documentation include path, content types, summary, description,
response codes and content.

Business logic
This is service and coordination layer for what is required to retrieve, package and store
information.

/src/main/java/

org.openepics.names.rest.api.service

For request to retrieve information, it retrieves data from persistence logic and then transform data
to such format that is suitable for reply to client.

For request to store information, it translates input such that it may be stored by persistence logic.

Persistence logic
This is repository, model and mapping, and storage layer that handles access to database

/src/main/java/

org.openepics.names.rest.api.respository

org.openepics.names.rest.api.respository.model

/src/main/resources/

application.properties

Database tables and columns are mapped to persistence model objects which then are used in
application for easier handling. In practice, Hibernate is used, although in configuration only.

Tests
There are tests for various purposes, unit tests and integration tests. This includes tests for ESS
Naming Convention in part and as a whole. Such tests contain verification of, and are as important
as implementation of, ESS Naming Convention.

16

It is also possible, and recommended, to test application locally and at test server.

/src/test/java/

org.openepics.names 1

org.openepics.names.docker 2

org.openepics.names.docker.complex 3

org.openepics.names.util 4

1 contains @SpringBootTest which loads Spring application context. This is auto-generated and
may be used for integration tests but is currently not used in that way. By loading application
context, it is ensured that various definitions are as expected, e.g. that access methods to repository
layer, that are defined in interfaces, go together with repository model.

4 contains unit tests for org.openepics.names.util package. This includes tests for
org.openepics.names.util.EssNamingConvention together with a range of tests for import
utility methods.

2, 3 contain integration tests with Docker containers.

Integration tests with Docker containers
These are JUnit tests that start a docker container for the application (Naming backend) and another
docker container for the database (Postgresql) through docker-compose-integrationtest.yml.
 @Container
 public static final DockerComposeContainer<?> ENVIRONMENT =
 new DockerComposeContainer<>(new File("docker-compose-integrationtest.yml"))
 .waitingFor(ITUtil.NAMING, Wait.forLogMessage(".*Started NamingApplication.*", 1));

Thereafter a number of Http requests (GET) and curl commands (POST, PUT, PATCH, DELETE)
are run towards the application to test REST API (CRUD - create, read, update, delete) and replies
are received and checked if content is as expected.

At start of each test class (with suffix IT), before any test is run, environment according to docker
compose file is started. File specifies a container for application and another container for database.
Application container awaits database container being ready before test environment is ready.

Integration tests in test class are then run in no particular order.

17

Recommendation to learn how tests work. It will be valuable in subsequent work.

Before integration tests may be run, application must be compiled.

In above example, variables are defined and example data is created. A number of Http requests
(GET) are run towards the application to check if data exists and if data is valid to create. Example
data is converted to Json and sent to server to be validated. It is expected that discipline does not
exists, that it is valid to be created and that data is valid.

Server is then invoked to create discipline. It is then expected that discipline exists but is not
approved, and that it is not valid to be created another time.

Server is then invoked to approve discipline. It is then expected that discipline exists and is
approved.

There are integration tests designed to test Create Read Update Delete + Approve Cancel Reject for
names and structures.

Purpose of tests is to ensure REST API works as expected for parts and as a whole.

As part of effort to design and write integration tests, various test utilities have been developed and
are available in same packages as integration tests. The purpose of test utilities is to simplify tests
and make them more clear and easier to understand.

18

E.g. outline of integration test with Docker to create and approve discipline (simplified)

StructureElementCommand structureElement = null;
StructureElement createdStructureElement = null;

structureElement = new StructureElement(
null, Type.Discipline, null,
”name”, “Ca”,
”description”, “name”

);

ITUtilStructureElement.assertExists (Type.DISCIPLINE, “Ca”, Boolean.FALSE);
ITUtilStructureElement.isValidToCreate(Type.DISCIPLINE, “Ca”, Boolean.TRUE);

ITUtilStructureElement.assertValidate(structureElement, StructureChoice.CREATE, Boolean.TRUE);
ITUtilStructureElement.assertValidate(structureElement, StructureChoice.APPROVE, Boolean.FALSE);

// create
createdStructureElement = ITUtilStructureElement.assertCreate(structureElement);
structureElement.setUuid(createdStructureElement.getUuid());

ITUtilStructureElement.assertExists (Type.DISCIPLINE, “Ca”, Boolean.TRUE);
ITUtilStructureElement.isValidToCreate(Type.DISCIPLINE, “Ca”, Boolean.FALSE);

ITUtilStructureElement.assertValidate(structureElement, StructureChoice.CREATE, Boolean.FALSE);
ITUtilStructureElement.assertValidate(structureElement, StructureChoice.APPROVE, Boolean.TRUE);

// approve
ITUtilStructureElement.assertApprove(structureElement);

ITUtilStructureElement.assertExists (Type.DISCIPLINE, “Ca”, Boolean.TRUE);
ITUtilStructureElement.isValidToCreate(Type.DISCIPLINE, “Ca”, Boolean.FALSE);

ITUtilStructureElement.assertValidate(structureElement, StructureChoice.CREATE, Boolean.FALSE);
ITUtilStructureElement.assertValidate(structureElement, StructureChoice.APPROVE, Boolean.FALSE);

How to go about tasks

Repository

Branch handling
If one or very few developers are active, main branch may be used for work, including merges,
before content is pushed to repository. Otherwise recommendation is to do merge and similar
operations in Gitlab.

Deploy
Deploy to servers are done in Gitlab through CI/CD section.

Reference
Naming convention

• https://chess.esss.lu.se/enovia/link/ESS-0000757/21308.51166.45568.45993/valid

Confluence

• https://confluence.esss.lu.se/display/SW/Naming+Tool%2C+Cable+DB%2C+CCDB
%2C+IOC+Factory%2C+RBAC

Repository – Gitlab

• https://gitlab.esss.lu.se/ics-software/naming-backend

◦ /docs/about/

◦ /docs/developer/refactoring/

Test server

• https://naming-test-02.cslab.esss.lu.se/swagger-ui/index.html

19

Recommendation to checkout separate branch for all work except only run application.

Ensure branch point is from proper commit.

Have well crafted branch names that match work at hand.

Test before commit & push. This includes unit tests and integration tests.

All integration tests may take 10 minutes to run and, unless all are required,
subset of integration tests may be used.

https://naming-test-02.cslab.esss.lu.se/swagger-ui/index.html
https://gitlab.esss.lu.se/ics-software/naming-backend
https://confluence.esss.lu.se/display/SW/Naming+Tool%2C+Cable+DB%2C+CCDB%2C+IOC+Factory%2C+RBAC
https://confluence.esss.lu.se/display/SW/Naming+Tool%2C+Cable+DB%2C+CCDB%2C+IOC+Factory%2C+RBAC
https://chess.esss.lu.se/enovia/link/ESS-0000757/21308.51166.45568.45993/valid

	Naming – architecture & code
	Introduction
	Getting started
	Understand
	Big picture
	Names & Structures
	Rules
	Domain model & Example
	Database

	Get up & running
	Database
	Application
	Compile
	Test
	Run

	Architecture & code
	Architecture mapped to code
	A request mapped to code

	Implementation
	ESS Naming Convention
	Beans
	REST API
	Excel
	Open API & Swagger UI

	Business logic
	Persistence logic
	Tests
	Integration tests with Docker containers

	How to go about tasks
	Repository
	Branch handling
	Deploy

	Reference

