
Naming REST API – brief introduction
by lars.johansson@ess.eu, ICS Software

Table of Contents
Naming REST API – brief introduction...1

Introduction..1
Background..2
Concepts & Terminology...3

The purpose of Naming...3
What is a Name?...3
Visualization – names and structures..5
Lifecycle for names and structures...6

Use cases..9
About searching...9
About data..10
Frequently Asked Questions (FAQ)...11
Reference...12

Introduction
This document will give brief introduction to redesigned Naming REST API. First set of sections
gives background information to work being done and next set of sections attempts to give more
practical information such as how to use Naming REST API, what data that is sent and received and
what it means together with some questions and answers.

This document will mention database and storage but is not about it. Its focus is on REST API.

Noteworthy

• It’s test versions of both application and its database. Information shouldn’t be relied upon.

• Currently

◦ REST API with Swagger UI

◦ No authentication/authorization implemented. Intention going forward is to have same
division of possibilities as in current Naming, i.e. visitor / user / administrator.

◦ No ordinary UI available

◦ Json format used for data that is sent and received

1

mailto:lars.johansson@ess.eu

Background
It’s been noticed that there is more and more focus on ability to service other applications, systems,
services with information and act as a microservice. This means more focus on REST API. Current
Naming has some possibilities to serve information. However its implementation (database and
application) has very strong boundaries to what is possible. Another reason for redesign of Naming
and REST API, which is perhaps even more important, is maintainability. This includes having
better foundation for future with better ability to support implementation of Naming convention.

Thus, modernization means refactoring of database and application. This modernization is required
for better understanding, maintainability and ability to handle requests and possibilities for Naming.

Brief background on database

Current Naming

• 2 tables used to store device names. One (1) handles uuids for device names while
other (2) handles all else for device names. Device name also known as ESS name.

• 2 tables used to store name parts. One (3) handles uuids while other (4) handles all
else for name parts. This table (4) handles all three levels of System structure and all
three levels of Device structure through recursive references.

◦ System structure – System group, System, Subsystem

◦ Device structure – Discipline, Device group, Device type

• tables in current Naming do neither correspond to data in real world nor to data that
is stored. In practice, data need to be interpreted in several steps to objects and then
stored in caches before usage

Refactored Naming

• 1 table for ESS name

• 1 table per System structure level – System group, System, Subsystem (3 tables)

• 1 table per Device structure level – Discipline, Device group, Device type (3 tables)

• tables in refactored database correspond to data in real world and to data that is
stored. This helps understanding and maintainability of database and application.

Comparison between refactored and current Naming tool

• names <---> ESS names

• structures <---> System structure, Device structure

2

Concepts & Terminology
Concepts & Terminology are summarized below with text in italic.

The application is commonly referred to as Naming, Naming tool, Naming convention tool. It is a
web application that includes a REST API for read purposes and it is connected to a database for
storage of names and structures. Naming is the most common way to refer to both application and
system as a whole.

In the process of refactoring, the application is split into a backend part and a frontend part, known
as Naming backend and Naming frontend.

The purpose of Naming

Handle Naming of ESS wide physical and logical devices according to ESS Naming
Convention

What is a Name?

ESS Name System structure Device structure

Which part of the facility does
the device provide service to?

What kind of service does the
device provide?

Must refer to
System structure

1 System Group 1 Discipline

May refer to
Device structure

2 System 2 Device Group

May have index
for instance

3 Subsystem 3 Device Type

System structure and Device structure are hierarchies with 3 levels each. A 3rd level entry refers to
2nd level entry that refers to 1st level entry. A name must refer to System structure (arbitrary level)
and may refer to Device structure (level 3). If Device structure is referred to, then index is to be set.

An entry, for name and structure, has a common set of attributes such as uuid, name, mnemonic,
description, comment, when requested and by whom, when processed and by whom, etc.

Each entry is identified by its universal identifier, also known as uuid. It is the common
denominator to keep track of an entry through its lifecycle, e.g. when the entry is created, updated,
deleted. An entry usually has another attribute called mnemonic which is a short name that is to be
unique in its namespace. This attribute is called mnemonic for an entry in System structure or
Device structure. For a names entry, this attribute is called index.

In addition, there is an attribute called name equivalence or mnemonic equivalence. This is derived
from name or mnemonic by taking similar-looking characters into account and helps to ensure that
name and mnemonic is unique within its namespace.

3

Mnemonic equivalence

o, O, 0 considered same from equivalence point-of-view

i, I, l, L, 1 considered same from equivalence point-of-view

leading 0 numerical characters removed

Uniqueness of an entry

Each entry has a unique uuid that acts as key in its line of history. This applies for both
name and structure entries.

An entry in names, System structure, Device structure must have attributes such that it is
unique in its namespace at any given time. This is achieved with proper values for
mnemonic and index.

Namespace for a name entry is all valid names.

Namespace for structure entry is its hierarchy.

Rules for names and structures

Structures

System, Subsystem, Discipline, Device Type must have mnemonic.

System Group may have mnemonic.

Device Group must not have mnemonic.

ESS Name = System Group

System Group + Device Type + Index

System

System + Device Type + Index

Subsystem

Subsystem + Device Type + Index

4

Visualization – names and structures

Acc Acc:RFS-PrlTap-054

A2T A2T:RFS-PrlTap-054

A2T-010PRL A2T-010PRL:RFS-PrlTap-054

5

Lifecycle for names and structures

An entry for names is valid when it is created and saved. It does not go through an approval
process. The entry may be modified multiple times. When entry is deleted, it has reached its end-of-
life and may no longer be modified. A special case is if entry is considered legacy. This is the case if
a parent is deleted. Then entry will remain but may no longer be modified except deleted. Any
change may be done by user. The term legacy is introduced in the latest Naming convention.

An entry for System structure and Device structure needs to go through an approval process for any
change. This includes create, modify, delete changes for an entry. The entry may be modified
multiple times. When entry is deleted, it has reached its end-of-life and may no longer be modified.
Any change is proposed by user and approved by administrator. A user may cancel request for
change. An administrator may approve or reject request for change.

The whereabouts in the lifecycle for names and structures is handled with attributes status, latest
and deleted. When an entry is deleted (names) or deleted and approved (structures), it has reached
its end-of-line.

A change for an entry is handled such that a new entry is created. When the new entry is approved,
attribute latest is set to true. Attribute latest for earlier entry is set to false. For any line of uuid, there
may be zero or one entry with latest set to true.

Default behavior

Default behavior for Naming is to handle valid entries. Therefore old values are excluded
unless history requested. This means that old values can not be browsed but must be
requested. Latest entry in line of uuid is available for browsing.

Examples

Purpose of examples is to show lifecycle of names and structures. Therefore some columns
are not shown, e.g. references to parents. A name has references to parents in System
structure and Device structure. A structure entry has reference to a parent.

In addition, examples contain information from both user side and storage side.

Names

id uuid name description status latest deleted

1 a A2T-010PRL:RFS-PRLTap-052 comment APPROVED false false

2 a A2T-010PRL:RFS-PRLTap-053 comment APPROVED false false

3 a A2T-010PRL:RFS-PRLTap-054 comment APPROVED true false

4 b A2T-010PRL comment 1 APPROVED false false

5 b A2T-010PRL comment 2 APPROVED true true

6 c A2T comment APPROVED true false

6

Structures - e.g. System

id uuid mnemonic description status latest deleted

1 m A0T comment PENDING false false

2 n A1T comment PENDING false false

3 n A1T comment APPROVED true false

4 o A2T comment PENDING false false

5 o A2T comment APPROVED true false

6 o A3T comment PENDING false false

7 o A3T comment CANCELLED false false

8 p A4T comment PENDING false false

9 p A4T comment APPROVED false false

10 p A5T comment PENDING false false

11 p A5T comment REJECTED false false

12 p A5T comment a PENDING false false

13 p A5T comment a APPROVED true false

14 q A6T comment PENDING false false

15 q A6T comment APPROVED true false

16 q A6T comment PENDING false true

17 q A6T comment REJECTED false true

18 r A7T comment PENDING false false

19 r A7T comment APPROVED false false

20 r A7T comment PENDING false true

21 r A7T comment APPROVED true true

Each time a modification is requested or processed, it will result in a new entry.

Each time a modification is processed (Structure), it will result in a new entry.

There is approval process for Structure but there is no approval process for Name.

When a modification is approved, its status attribute till be set to APPROVED and latest
attribute set to true. For any given line of uuid, there may be 0 or 1 entry with latest attribute
set to true. Latest attribute indicate if entry is latest and approved in its line of uuid.

7

An entry with attribute deleted set to true that has been APPROVED has reached its end-of-
line.

Rows with gray background color are considered history and are excluded unless history is
requested. Rows become history when there is a more recent entry with status APPROVED
and latest set to true. History for an entry may be requested through its uuid.

The lifecycle for names and structures are handled with attributes status, latest, deleted as shown in
examples above.

status – APPROVED, CANCELLED, REJECTED, PENDING

latest – true, false

deleted – true, false

The lifecycle may be simplified for easier handling, in particular for when information is read.

Combinations of status, latest, deleted may be handled by finite set of values

ACTIVE, LEGACY, OBSOLETE, PENDING

ACTIVE approved, latest = true, deleted = false

LEGACY entry is ACTIVE but with deleted parent

OBSOLETE entry is outdated (more recent entry available)
or CANCELLED, REJECTED
or deleted

PENDING entry has modification that is requested but not yet processed

A value that is no longer valid corresponds to OBSOLETE.

Note that user needs to set values for attributes status, latest, deleted when an entry is created,
modified or deleted.

Expected values for attributes status, latest, deleted when an entry is created, modified or deleted

create – status PENDING, latest false, deleted false

modify – status PENDING, latest false, deleted false

deleted – status PENDING, latest false, deleted true

8

Use cases
To have REST API with ability to have / handle

• healthcheck

• names

◦ create, read, update, delete (CRUD)

◦ read – exact match, search

◦ handle single and multiple entries

• structures

◦ create, read, update, delete + approve, cancel, reject (CRUD + additional)

◦ retrieve – exact match, search

◦ handle single and multiple entries

About searching
Exact match

• Is exact match = no search

Search

• Default behavior is exact match

• No regex

• Two additional characters may be used to help search and may be written anywhere in
search string to give regex-like behavior

◦ _ underscore, 0 or 1 occurrences of any character
◦ % percent, any number of any character
◦ e.g.

▪ A2T-010PRL:RFS-PRLTap-054
▪ A2T-010PRL:RFS-PRLTap-0_ will not give match
▪ A2T-010PRL:RFS-PRLTap-0__ will give match
▪ A2T-010PRL:RFS-PRL% will give match

9

About data
What is sent to and received from Naming REST API

• a string

• json

Examples

Name and NameElement

A2T-010PRL:RFS-PRLTap-054

System structure

• Accelerator

• Accelerator to Target

• 01 Phase Reference Line

Device structure

• RF Systems

• Phase Reference Line

• Phase Reference Line Tap

Index

• 054

json

• {"uuid":"07bce0ae-0947-47c8-941e-
cc76678fd29a","description":null,"status":"APPROVED","latest":true,"delete
d":false,"when":"2017-10-
20T12:53:27.229+00:00","who":"johannorin","comment":null,"systemgroup"
:null,"system":null,"subsystem":"c2fce615-ed5d-40f9-8fb5-
0b91502536e5","devicetype":"bb1e68a6-e233-4595-ae88-
f9186b6760c6","systemstructure":"A2T-010PRL","devicestructure":"RFS-
PRLTap","index":"054","name":"A2T-010PRL:RFS-PRLTap-054"}

Rules

• A name must have exactly one system structure parent, either systemgroup or
system or subsystem

• A name may have device structure parent, devicetype

10

In name above

• subsystem uuid refers to subsystem 01 Phase Reference Line that in turn
refers to system Accelerator to Target that in turn refers to system group
Accelerator

• device type uuid refers to device type Phase Reference Line Tap that in turn
refers to device group Phase Reference Line that in turn refers to discipline
RF Systems

Since name above was created, implementation of Naming was changed so that
description and comment are mandatory.

Structure and StructureElement

Accelerator to Target A2T

json

• {"uuid":"e67a497c-9c55-4942-97fc-700c8ec56031","description":"The
Accelerator to Target Station interface including the
dogleg","status":"APPROVED","latest":true,"deleted":false,"when":"2016-
07-
04T10:06:38.873+00:00","who":"danielpisofernandez","comment":"Approve
d by Daniel Piso","type":"SYSTEM","parent":"4262e1e7-2444-412e-83d7-
aeabf58262c6","name":"Accelerator to
Target","mnemonic":"A2T","mnemonicpath":"Acc-A2T","level":2}

Frequently Asked Questions (FAQ)
Topics / questions / answers, no particular order

• Capabilities of REST API
◦ All operations in Naming are available in REST API

• Json format used for data that is sent and received
◦ Data is provided or received as json, as single entry of arrays of entries,

• Retrieval available with exact match and search. Default for search is exact match but may
be adjusted for true search. Regex is not available. There are instead two special characters
to use for search and regex-like behavior.
◦ _ underscore, 0 or 1 occurrences of any character
◦ % percent, any number of any character

• Retrieval available with abilities

11

◦ search on individual fields
◦ sorting
◦ pagination

• Index for a name
◦ Field is alphanumerical. Existing names usually have index. Values include alphabetical,

numerical, alphanumerical. When index is to be set, it is to be set explicitly and not auto-
generated.

• Legacy name
◦ A legacy name is a name for which one or both parents (System structure, Device

structure) have been deleted. In current Naming, a name is deleted when a parent of
arbitrary level is deleted. This is not the intention of the latest Naming convention.
Instead the name will keep on living when one or both of its parents are deleted but the
only change that is possible is deletion. However the name will keep on living until it’s
explicitly deleted.

• Validation
◦ Ability to validate modifying operation before invoḱing modifying operation. Modifying

operation internally use same validation.

Reference
Naming convention

• https://chess.esss.lu.se/enovia/link/ESS-0000757/21308.51166.45568.45993/valid

12

https://chess.esss.lu.se/enovia/link/ESS-0000757/21308.51166.45568.45993/valid

	Naming REST API – brief introduction
	Introduction
	Background
	Concepts & Terminology
	The purpose of Naming
	What is a Name?
	Visualization – names and structures
	Lifecycle for names and structures

	Use cases
	About searching
	About data
	Frequently Asked Questions (FAQ)
	Reference

