
Naming – thoughts on refactoring

Table of Contents
Abstract..1
Motivation..2
Introduction to Naming data landscape...3

Visualization (1) – ESS names and name part structure...4
Visualization (2) – name and name part structure, tables, objects..4
Visualization (3) – database, tables, subset of columns..5
Visualization (4) – user, application, database, tables, objects...6

Exploring Options..6
Suggestions...7

Proof-of-Concept...8
Way forward..8

Thoughts..9
Conclusion...9
References..9

Application..9
Repository...9

Appendix..10
A. Database scripts..10

A1. Current database script..10
A2. Suggestion 1, database script, includes migration of data..10
A3. Suggestion 2, database script, includes migration of data..10
A4. Suggestion 3, database script..10
A5. Suggestion 4, database script, includes migration of data..10

B. Database visualizations..10
B1. Database visualizations & Proof-of-concept...10
B2. Persistence Layer..11

Abstract
Naming data model and storage is complex and difficult to understand and maintain which makes
Naming application complex and difficult to understand and maintain. This paper explores current
data model and storage and application, together with options for refactored data model and storage
and outline of refactored application. Different sections in paper explores various aspects of data
model and storage and application, in various detail.

Note that implementation of application is not explored. It is sufficed to know that it may be done.

Motivation
Naming application is stable but difficult to understand. This makes for long time to understand
enough before enough knowledge is acquired to work comfortably with application and database.
What you see in application is not what you get from database. There is a distance between data
storage and data presentation which manifests itself in a number of steps, model objects, business
objects, interpretation of business objects, caching of business objects.

Some factors make for more difficulties than other factors. Model for data storage does not
correspond to reality but rather a compact way of storing hierarchical data in few tables with help of
recursive relations. Entire content of Naming database is kept in two caches to allow for normal
responsiveness in application.

Caches

1. names together with name part structures. Used in UI. tree structure of business objects

2. names. Used in REST API and import from Excel. flat structure of business objects

When there is change for names or name part structure, database is re-read, content interpreted into
business objects and caches re-read. Parallel with caches, database is also used, e.g. for history
operations. Thus, UI and REST API use combinations of caches and database queries.

Database design is flexible but complex. Name part structure of arbitrary level may be handled.
This is handled through recursive references. As a result, caching was introduced in order to have a
usable application for existing database. Modification of data is handled as revisions of data which
in practice translates to rows in tables. Amount of data is in order of 1000+ entries for name part
structure and in order of 100000+ entries for names (includes history).

A different data model and storage, with closer resemblance to names and name part structure as in
Naming convention, allows for easier understanding. In other words, a data model closer to domain
model forms a better base for understanding than today. This in turn makes for less time before
enough knowledge is acquired to work comfortably with application and database. Moreover, and
more importantly, this allows for removal of caches.

Refactoring of data model and storage, and removal of caches, require refactoring of application.

A more straightforward approach for database model and storage allows for better understanding,
less distance between storage and usage and easier modification when handling requests for
changes. It also allows for more and better usage of REST API. Such usage is currently done by a
number of known applications and systems, e.g. CCDB ecosystem (Cable, CCDB, IOC Factory),
CHESS, IOC deployment tool, Awesome Naming Tool, Device viewer, PV Validator. On top of this,
REST API is also used by Infrastructure group for monitoring of applications. Since REST API has
no authentication or token, usage is at least as mentioned but may be greater.

As REST API usage is foreseen to increase, care is to be taken to aid its development and usage.

Introduction to Naming data landscape
Naming Tool manages the naming of ESS wide physical and logical devices according to ESS
Naming Convention.

Naming consist of names (ESS names) and name part structures (System Structure, Device
Structure). Name part structures are hierarchical and consist of 1-3 layers.

System Structure layers

Which part of the facility does the device provide service to?

1 System Group may contain System
2 System belongs to System Group, may contain Subsystem
3 Subsystem belongs to System

Device Structure layers

What kind of service does the device provide?

1 Discipline may contain Device Group
2 Device Group belongs to Discipline, may contain Device Type
3 Device Type belongs to Device Group

ESS name

must refer to System Structure layer
may refer to Device Structure layer 3
may have index for instance of name (to avoid potential duplicates)

There are rules for names, mnemonics, descriptions, and other fields. An name part entry must have
mnemonic to be part of ESS name. Each entry in either System Structure, Device Structure, ESS
name has identifier UUID. This is unique for entry and remains same across lifespan of data
(revisions). Additional data such as who did what and when are also stored.

For current implementation, revisions for all levels of System Structure and Device Structure are
stored in same table through references to parent that may have revisions that in turn references
parent that in turn may have revisions. Revisions for ESS name are stored in same table through
references to System Structure and Device Structure. In order to be useful for application, revisions
are interpreted into business objects.

Revision handling is important to consider current information “where we are” and “where we are
going”.

Visualization (1) – ESS names and name part structure

Acc Acc:RFS-PrlTap-054

A2T A2T:RFS-PrlTap-054

A2T-010PRL A2T-010PRL:RFS-PrlTap-054

Visualization (2) – name and name part structure, tables, objects

Visualization (3) – database, tables, subset of columns

System structure
namepart, namepartrevision

id id version deleted mnemonic name status namepart_id parent_id

1 1 4 false Acc Accelerator APPROVED 1 [NULL]

1 1050 1 false [NULL] Accelerator APPROVED 1 [NULL]

16 16 2 false A2T Accelerator to Target APPROVED 16 1

16 1708 1 false A2T Accelerator to Target APPROVED 16 1

1359 2292 3 false 010PRL 01 Phase Reference Line APPROVED 1359 16

Device structure
namepart, namepartrevision

id id version deleted mnemonic name status namepart_id parent_id

242 242 2 false RFS RF Systems APPROVED 242 [NULL]

1349 2282 1 false [NULL] Phase Reference Line APPROVED 1349 242

1350 2692 3 false PRLTap Phase Reference Line Tap APPROVED 1350 1349

ESS name
device, devicerevision

id id conventionname conventionname
eqclass

deleted instanceindex device_id devicetype_id section_id

3957 32540 A2T-
010PRL:RFS-
PRLTap-054

A2T-
10PR1:RFS-
PR1TAP-54

false 054 3957 1350 1359

There may be multiple revisions for System Structure and Device Structure entries and also for ESS
name entries. There is example of ESS name with 17 revisions which correspond to 17 rows in
devicerevision table. In above examples are multiple revisions (two each) for System Structure
entries Accelerator and Accelerator to Target.

Visualization (4) – user, application, database, tables, objects

The circle in lower left is user interacting with Naming application.

Exploring Options
A data model and and storage that is easier to understand is desired.

This may be manifested in a flatter data model and storage.

Outline of name and name part structure

ESS Name must refer either of System Group, System, Subsystem.

ESS Name may refer Device Type.

There is table for ESS name that refers to tables for System Group, System, Subsystem
(System Structure) and Device Type (Device Structure).

id name systemgroup_id system_id subsystem_id devicetype_id instanceindex

(optional) (optional) (optional) (optional) (optional)

Together with above are tables for name part structures.

• tables for System Group, System, Subsystem (System Structure)

• tables for Discipline, Device Group, Device Type (Device Structure)

Each table

id name mnemonic

Additional data such as who did what and when are also stored. There may be multiple
revisions. Revision handling is important to consider current information “where we are”
and “where we are going”.

See appendix for detailed suggestions, database and script.

ESS Name

System Group Subsystem Device TypeSystem

Suggestions

Suggestion 1 Suggestion 2

keep uuid in existing tables transfer uuid of namepart, device to
new tables

keep tables • appinfo
• flyway_schema_history
• user_notification
• namepart
• device

• appinfo
• flyway_schema_history
• user_notification

remove tables • namepartrevision
• devicerevision
• useraccount

• namepart
• namepartrevision
• device
• devicerevision
• useaccount

new tables System Structure
• namepartrevision_systemgroup
• namepartrevision_system
• namepartrevision_subsystem

Device Structure
• namepartrevision_discipline
• namepartrevision_devicegroup
• namepartrevision_devicetype

ESS name
• devicerevision_device

System Structure
• namepartrevision_systemgroup
• namepartrevision_system
• namepartrevision_subsystem

Device Structure
• namepartrevision_discipline
• namepartrevision_devicegroup
• namepartrevision_devicetype

ESS name
• devicerevision_device

Table useraccount with user and role is not clear as role may change over time. Instead of revisions
referring to useraccount table, username may be written in revision. (to be investigated)

A key part of refactoring data model and storage is keeping existing content with history.

Suggestion 1 is somewhat more straightforward for database scripts as existing namepart and device
tables are kept.

Proof-of-Concept
Proof-of-concept is done by considering that REST API should stay the same and how
implementation may be updated to handle suggestions. Proof-of-concept is mostly a theoretical
exercise, e.g. that REST API endpoint may be handled by having implementation query certain
tables in certain order.

See Appendix B1 - Database visualizations & Proof-of-concept.

Way forward

A lot of things need to be considered when going forward with refactoring of Naming.

Among them are:

• Lazy loading (no lazy loading for primefaces tree component)

• ORM, Hibernate, eager vs. lazy

• ORM, Hibernate, no regex

• Performance

• Regex

• REST API implementation – compare with today

• UI, stay same or not, similar or not, depend on REST API or not

Thoughts
Current database table allows tree hierarchy of arbitrary depth through recursive references, thereby
having flexible approach. However hierarchy is complex and difficult to understand.

A flatter data model and storage is easier to understand and maintain than a tree hierarchy with
recursive references. The same applies for application that uses data model and storage.

Moreover, a flatter data model and storage allows for database queries to retrieve information and
solve tasks in application UI and REST API without having to maintain multiple caches for names
and name structures.

Conclusion
It is desired to have a data model and storage, with closer resemblance to domain model (names and
name part structure) than today. This makes for less time before enough knowledge is acquired to
work comfortably with application and database.

Future usage of Naming can be predicted to some extent. This includes current usage as in
application UI and REST API. As more usage of REST API is foreseen, it is important to support
retrieval (and possible storing) of information (minimum not block options).

Refactoring of data model and storage require refactoring of application.

Recommendation is to refactor Naming data model and storage and application.

References

Application

• https://naming.esss.lu.se/

• https://naming.esss.lu.se/rest/

Repository

• https://gitlab.esss.lu.se/ics-software/naming-convention-tool

◦ master branch

▪ documentation/developer/application

• naming_accelerator_as_system.pdf

• naming_developer_documentation.pdf

https://gitlab.esss.lu.se/ics-software/naming-convention-tool
https://naming.esss.lu.se/rest/
https://naming.esss.lu.se/

Appendix

A. Database scripts

A1. Current database script

See file(s)

• Appendix_A1

◦ V1__Initial.sql

◦ V2__Commit_Msg_to_Device.sql

◦ V3__Notification_CC_List.sql

A2. Suggestion 1, database script, includes migration of data

See file(s)

• Appendix_A2

◦ script_notes_2_id.txt

A3. Suggestion 2, database script, includes migration of data

See file(s)

• Appendix_A3

◦ script_notes_3.0_uuid.txt

◦ script_notes_3.1_uuid.txt (supersedes 3.0)

A4. Suggestion 3, database script

Not (yet) available

A5. Suggestion 4, database script, includes migration of data

B. Database visualizations

B1. Database visualizations & Proof-of-concept

See file(s)

• Appendix_B1

◦ database_diagrams.pdf

▪ Naming database

• current

• Suggestion 1

• Suggestion 2

• Suggestion 3

• Suggestion 4

▪ REST API

▪ Proof-of-concept

• Suggestion 1

• Suggestion 2

• Suggestion 4

B2. Persistence Layer

See file(s)

• Appendix_B2

◦ https://confluence.esss.lu.se/pages/viewpage.action?
spaceKey=SW&title=New+Persistence+Layer+%28i.e.+database+schema
%29+for+the+Naming+Service

▪ Created by Ricardo Fernandes, last modified on Jun 14, 2016

▪ ns_database_schema.png

https://confluence.esss.lu.se/pages/viewpage.action?spaceKey=SW&title=New+Persistence+Layer+(i.e.+database+schema)+for+the+Naming+Service
https://confluence.esss.lu.se/pages/viewpage.action?spaceKey=SW&title=New+Persistence+Layer+(i.e.+database+schema)+for+the+Naming+Service
https://confluence.esss.lu.se/pages/viewpage.action?spaceKey=SW&title=New+Persistence+Layer+(i.e.+database+schema)+for+the+Naming+Service

	Abstract
	Motivation
	Introduction to Naming data landscape
	Visualization (1) – ESS names and name part structure
	Visualization (2) – name and name part structure, tables, objects
	Visualization (3) – database, tables, subset of columns
	Visualization (4) – user, application, database, tables, objects

	Exploring Options
	Suggestions

	Proof-of-Concept
	Way forward

	Thoughts
	Conclusion
	References
	Application
	Repository

	Appendix
	A. Database scripts
	A1. Current database script
	A2. Suggestion 1, database script, includes migration of data
	A3. Suggestion 2, database script, includes migration of data
	A4. Suggestion 3, database script
	A5. Suggestion 4, database script, includes migration of data

	B. Database visualizations
	B1. Database visualizations & Proof-of-concept
	B2. Persistence Layer

