
Naming REST API – brief introduction
by lars.johansson@ess.eu, ICS Software

Table of Contents
Naming REST API – brief introduction...1

Introduction..1
Background..2
Concepts & Terminology...3

The purpose of Naming...3
What is a Name?...3
Visualization – names and structures..5
Lifecycle for names and structures...6
Vocabulary...9

REST API endpoints..12
Data – Access..12
Healthcheck...12
Report..12
Names..13

Path...13
Authorization..14

Structures...14
Path...14
Authorization..16

About searching...16
About data..17
Frequently Asked Questions (FAQ)...18
Reference...19

Introduction
This document will give brief introduction to Naming REST API. First set of sections, such as
Background and Concepts & Terminology, explains purpose of Naming and gives visualization of
names & structures. Next set of sections attempts to give more practical information such as how to
use Naming REST API, what data that is sent and received and what it means together with some
questions and answers.

This document will mention persistence and storage but is not about it. Its focus is on REST API.

1

mailto:lars.johansson@ess.eu

Background

It’s been noticed that there is more and more focus on ability to service other applications, systems,
services with information and act as a microservice. This means more focus on REST API. This
includes having proper foundation for future with ability to support implementation of Naming
convention.

Brief background on storage of data

• 1 entity for ESS name

• 1 entity per System structure level – System group, System, Subsystem (3 tables)

• 1 entity per Device structure level – Discipline, Device group, Device type (3 tables)

• storage corresponds to data in real world. This helps understanding and maintainability of
storage and application.

Brief vocabulary

• names <---> ESS names

• structures <---> System structure, Device structure

Noteworthy

• REST API with Swagger UI

• No ordinary UI available

• Json format used for data that is sent and received

• Not about authentication/authorization. Intention is to have division of possibilities, e.g.
visitor / user / administrator.

In various places are framed boxes with information that is noteworthy and may help understanding

2

Note!

Text that is noteworthy, summary, help & more

Concepts & Terminology
Concepts & Terminology are summarized below with text in italic.

The application is commonly referred to as Naming, Naming tool, Naming convention tool. It is a
web application that includes a REST API for read purposes and it is connected to a storage of
names and structures. Naming is the most common way to refer to both application and system as a
whole.

The application is split into a backend part and a frontend part, known as Naming backend and
Naming frontend.

The purpose of Naming
Handle Naming of ESS wide physical and logical devices according to ESS Naming
Convention

What is a Name?
ESS Name System structure Device structure

Which part of the facility does
the device provide service to?

What kind of service does
the device provide?

Must refer to
System structure

1 System Group 1 Discipline

May refer to
Device structure

2 System 2 Device Group

May have index
for instance

3 Subsystem 3 Device Type

System structure and Device structure are hierarchies with 3 levels each. A 3rd level entry refers to
2nd level entry that refers to 1st level entry. A name must refer to System structure (arbitrary level)
and may refer to Device structure (level 3). If Device structure is referred to, then index is to be set.

An entry, for name and structure, has a common set of attributes such as uuid, name, mnemonic,
description, comment, when requested and by whom, when processed and by whom, etc.

Each entry is identified by its universal identifier, also known as uuid. It is the common
denominator to keep track of an entry through its lifecycle, e.g. when the entry is created, updated,
deleted. An entry usually has another attribute called mnemonic which is a short name that is to be
unique in its namespace. This attribute is called mnemonic for an entry in System structure or
Device structure. For a names entry, this attribute is called index.

In addition, there is an attribute called name equivalence or mnemonic equivalence. This is derived
from name or mnemonic by taking similar-looking characters into account and helps to ensure that
name and mnemonic is unique within its namespace.

3

Mnemonic equivalence

o, O, 0 considered same from equivalence point-of-view

i, I, l, L, 1 considered same from equivalence point-of-view

leading 0 numerical characters removed

Uniqueness of an entry

Each entry has a unique uuid that acts as key in its line of history. This applies for both
name and structure entries.

An entry in names, System structure, Device structure must have attributes such that it is
unique in its namespace at any given time. This is achieved with proper values for mnemonic
and index.

Namespace for a name entry is all valid names.

Namespace for structure entry is its hierarchy.

Rules for names and structures

Structures

System, Subsystem, Discipline, Device Type must have mnemonic.

System Group may have mnemonic.

Device Group must not have mnemonic.

ESS Name = System Group

System Group + Device Type + Index

System

System + Device Type + Index

Subsystem

Subsystem + Device Type + Index

4

Visualization – names and structures

Acc Acc:RFS-PrlTap-054

A2T A2T:RFS-PrlTap-054

A2T-010PRL A2T-010PRL:RFS-PrlTap-054

5

Lifecycle for names and structures
An entry for names is valid when it is created and saved. It does not go through an approval
process. The entry may be modified multiple times. When entry is deleted, it has reached its end-of-
life and may no longer be modified. A special case is if entry is considered legacy. This is the case if
a parent is deleted. Then entry will remain but may no longer be modified except deleted. Any
change may be done by user. The term legacy is introduced in the latest Naming convention.

An entry for System structure and Device structure needs to go through an approval process for any
change. This includes create, modify, delete changes for an entry. The entry may be modified
multiple times. When entry is deleted, it has reached its end-of-life and may no longer be modified.
Any change is proposed by user and approved by administrator. A user may cancel request for
change. An administrator may approve or reject request for change.

The whereabouts in the lifecycle for names and structures is handled with attributes status, latest
and deleted. When an entry is deleted (names) or deleted and approved (structures), it has reached
its end-of-line.

A change for an entry is handled such that a new entry is created. When the new entry is approved,
attribute latest is set to true. Attribute latest for earlier entry is set to false. For any line of uuid, there
may be zero or one entry with latest set to true.

Default behavior

Default behavior for Naming is to handle valid entries. Therefore old values are excluded
unless history requested. This means that old values can not be browsed but must be
requested. Latest entry in line of uuid is available for browsing.

Examples

Purpose of examples is to show lifecycle of names and structures. Therefore some columns
are not shown, e.g. references to parents. A name has references to parents in System
structure and Device structure. A structure entry has reference to a parent. Entries are
grouped per uuid and shown in ascending order.

In addition, examples contain information from both user side and storage side.

Names

lifecycle uuid name description status latest deleted

obsolete a A2T-010PRL:RFS-PRLTap-052 comment APPROVED false false

obsolete a A2T-010PRL:RFS-PRLTap-053 comment APPROVED false false

active a A2T-010PRL:RFS-PRLTap-054 comment APPROVED true false

obsolete b A2T-010PRL comment 1 APPROVED false false

active b A2T-010PRL comment 2 APPROVED true true

active c A2T comment APPROVED true false

6

Structures - e.g. System

lifecycle uuid mnemonic description status latest deleted

pending m A0T comment PENDING false false

obsolete n A1T comment PENDING false false

active n A1T comment APPROVED true false

obsolete o A2T comment PENDING false false

active o A2T comment APPROVED true false

obsolete o A3T comment PENDING false false

obsolete o A3T comment CANCELLED false false

obsolete p A4T comment PENDING false false

obsolete p A4T comment APPROVED false false

obsolete p A5T comment PENDING false false

obsolete p A5T comment REJECTED false false

obsolete p A5T comment a PENDING false false

active p A5T comment a APPROVED true false

obsolete q A6T comment PENDING false false

active q A6T comment APPROVED true false

obsolete q A6T comment PENDING false true

obsolete q A6T comment REJECTED false true

obsolete r A7T comment PENDING false false

obsolete r A7T comment APPROVED false false

obsolete r A7T comment PENDING false true

deleted r A7T comment APPROVED true true

Each time a modification is requested or processed, it will result in a new entry.

Each time a modification is processed (Structure), it will result in a new entry.

There is approval process for Structure but there is no approval process for Name.

When a modification is approved, its status attribute till be set to APPROVED and latest
attribute set to true. For any given line of uuid, there may be 0 or 1 entry with latest attribute
set to true. Latest attribute indicate if entry is latest and approved in its line of uuid.

An entry with attribute deleted set to true that has been APPROVED has reached its end-of-
line.

Rows with gray background color are considered history and are excluded unless history is
requested. Rows become history when there is a more recent entry with status APPROVED
and latest set to true. History for an entry may be requested through its uuid.

7

The lifecycle for names and structures are handled with attributes status, latest, deleted as shown in
examples above.

status – APPROVED, CANCELLED, REJECTED, PENDING

latest – true, false

deleted – true, false

The lifecycle may be simplified for easier handling, in particular for when information is read.

Combinations of status, latest, deleted may be handled by finite set of values

ACTIVE status = APPROVED, latest = true, deleted = false

DELETED status = APPROVED, latest = true, deleted = true

LEGACY entry is ACTIVE but with deleted parent

OBSOLETE entry is outdated (more recent entry available)
or CANCELLED, REJECTED

PENDING entry has modification that is requested but not yet processed

A value that no longer is valid corresponds to OBSOLETE.

Note that user needs to set values for attributes status, latest, deleted when an entry is created,
modified or deleted.

Expected values for attributes status, latest, deleted when an entry is created, modified or deleted

create – status PENDING, latest false, deleted false

modify – status PENDING, latest false, deleted false

deleted – status PENDING, latest false, deleted true

8

Vocabulary
Vocabulary below with headlines with text in italic.

What Description Example

Names & Structures

Name Name for ESS physical and
logical device

A2T-010PRL:RFS-PRLTap-054

System structure Which part of the facility does
the device provide service to?

A2T-010PRL

Device structure What kind of service does the
device provide?

Cryo-TT

System group System structure level 1 Accelerator (Acc)

System System structure level 2 Accelerator to Target (A2T)

Subsystem System structure level 3 01 Phase Reference Line (010PRL)

Discipline Device structure level 1 RF Systems (RFS)

Device group Device structure level 2 Phase Reference Line

Device type Device structure level 3 Phase Reference Line Tap (PRLTap)

Concepts & Terminology

ESS Naming Convention Rules for naming ESS Systems
and Devices and Components
in EPICS-based control
system.

https://chess.esss.lu.se/
enovia/link/ESS-
0000757/21308.51166.4556
8.45993/valid

Equivalence Derived from name or
mnemonic by taking similar-
looking characters into account
and helps to ensure that name
and mnemonic is unique within
its namespace.

o, O, 0 - considered same from
equivalence point-of-view

i, I, l, L, 1 - considered same from
equivalence point-of-view

leading 0 numerical characters
removed

Lifecycle of names and
structures

The lifecycle of ESS name and
structure entries. Each entry
has a unique identifier
throughout its lifecycle. The
lifecycle is governed by
attributes status, latest, deleted.

An entry that is deleted and
approved may no longer be updated
(or revived).

Line of uuid A collection of ESS name or structure entries that share the same
identifier and together make up an entry’s history.

Legacy name An ESS name is considered legacy if it is active and has a deleted
parent.

9

https://chess.esss.lu.se/enovia/link/ESS-0000757/21308.51166.45568.45993/valid
https://chess.esss.lu.se/enovia/link/ESS-0000757/21308.51166.45568.45993/valid
https://chess.esss.lu.se/enovia/link/ESS-0000757/21308.51166.45568.45993/valid

Namespace Line of uuid from top level to
bottom level, for system
structure and device structure,
respectively. An index or a
mnemonic or mnemonic
equivalence may exist only
once in a namespace for entries
that are approved, latest, not
deleted. Namespace for a name
entry is all valid names.
Namespace for a structure
entry is its hierarchy.

Rules for names and
structures

System, Subsystem, Discipline,
Device Type must have
mnemonic.

System Group may have
mnemonic.

Device Group must not have
mnemonic.

REST API methods

POST Http request method for create create

GET Http request method for read read, find, search, equivalence,
exists

PUT Http request method for update update

DELETE Http request method for delete delete

PATCH Http request method for partial
update

approve, cancel, request

REST API schemas

Name element A collection of fields that
represent an ESS name entry
(comprehensive). From server
to client.

Name command element A collection of fields that
represent an ESS name entry
(minimum). From client to
server. Purpose to simplify
communication client to server.

Structure element A collection of fields that
represent an ESS system
structure or device structure
entry (comprehensive). From
server to client.

10

Structure command element A collection of fields that
represent an ESS system
structure or device structure
entry (minimum). From client
to server. Purpose to simplify
communication client to server.

REST API fields (sub-selection)

Type Kind of structure. SYSTEMGROUP, SYSTEM,
SUBSYSTEM, DISCIPLINE,
DEVICEGROUP, DEVICETYPE

Index (Instance index) A string. May be considered
mnemonic for a name. To
distinguish devices of the same
type in the same system. Two
different set of rules for index
are identified for the Scientific
and P&ID disciplines.

Mnemonic A set of characters and
numbers to identify an entry in
system structure and device
structure.

Mnemonic equivalence A mnemonic with rules for
equivalence applied.

Status Status for entry in hierarchy of
names and structures

APPROVED, CANCELLED,
REJECTED, PENDING

Latest To show if entry is latest in its
line of (uuid) entries.

true, false

Deleted To show if entry is deleted in
its line of (uuid) entries.

true, false

REST API media type

application/json Supported

application/xml Not supported

Authentication & authorization

Authentication ESS username and password

Authorization None (read), User,
Administrator

None – Read-only access

User – All operations for names.
Propose create, update, delete for
structure entries + cancel a
proposal.

Administrator – All operations for
names and structures.

11

REST API endpoints

Data – Access

Healthcheck

HTTP method Path & Query string Description
GET /healthcheck Perform healthcheck for Naming

application in general and healtcheck
endpoint in particular. To be used
mainly for checking HTTP response
code, in particular HTTP STATUS
OK - 200.

Report

HTTP method Path & Query string Description
GET /report/about About Naming. Return report about

Naming (text).

Content

• Metrics for Naming
1. Overview
2. ESS names
3. System structure
4. Device structure
5. Device structure -

P&ID Disciplines

12

Names

Path
/api/v1/names

HTTP method Path & Query string Description
POST Create names by array of name element

commands. Return array of name elements for
created names.

POST /upload Create names by upload Excel file. Return Excel
file with name elements for created names.

GET Find valid names (search). Return paged array of
name elements.

GET /download Find valid names (search). Return Excel file with
paged list of name elements.

GET /{name} Find valid names by name or uuid (search).
Return paged array of name elements.

GET /systemStructure/{mnemonicpath} Find valid names by system structure mnemonic
path (search). Return paged array of name
elements.

GET /deviceStructure/{mnemonicpath} Find valid names by device structure mnemonic
path (search). Return paged array of name
elements.

GET /history Find history for name by uuid (exact match).
History consists of lines of uuid. The line of uuid
is not broken in retrieving history. The line of
uuid is not broken in retrieving history. If
combination of parameters is found in name
entries, the entire lines of uuid are returned.
Return paged array of name elements.

GET /history/{uuid} Find history for name by uuid (exact match).
History consists of line of uuid. The line of uuid
is not broken in retrieving history. If the uuid is
found in a name entry, the entire line of uuid is
returned. Return paged array of name elements.

GET /equivalence/{name} Return name equivalence for name.

GET /exists/{name} Return if name exists (exact match). Response is
true if name exists, false otherwise.

GET /isLegacy/{name} Return if name is legacy name (exact match). A
name is considered legacy name if one or more of
its parents is deleted.

GET /isValidToCreate/{name} Return if name is valid to create (exact match).
Method answers question 'would it be ok to
create given name?'.

PUT Update names by array of name element
commands. Return array of name elements for
updated names.

PUT /upload Update names by upload Excel file. Return Excel
file with name elements for updated names.

13

DELETE Delete names by array of name element
commands. Return array of name elements for
deleted names.

DELETE /upload Delete names by upload Excel file. Return Excel
file with name elements for deleted names.

Authorization

HTTP method Authorization Description
GET Not required Read

POST, PUT, DELETE User Create, Update, Delete

Structures

Path
/api/v1/structures

HTTP method Path & Query string Description
POST Create (propose) structures by array of structure

element commands. Return array of structure
elements for created structures (proposals).

POST /upload Create (propose) structures by upload Excel file.
Return Excel file with structure elements for
created structures (proposals).

GET /{type} Find valid structures (search). Return paged array
of structure elements.

GET /{type}/download Find valid structures (search). Return Excel file
with paged list of structure elements.

GET /children/{uuid} Find valid children structures by type and parent
uuid (exact match). Return paged array of
structure elements.

GET /mnemonic/{mnemonic} Find valid structures by mnemonic (search).
Return paged array of structure elements.

GET /history Find history for structure (search). History
consists of lines of uuid. The line of uuid is not
broken in retrieving history. If combination of
parameters is found in structure entries, the entire
lines of uuid are returned. Return paged array of
structure elements.

GET /history/{uuid} Find history for structure by uuid (exact match).
History consists of line of uuid. The line of uuid
is not broken in retrieving history. If the uuid is
found in a structure entry, the entire line of uuid
is returned. Return paged array of structure
elements.

14

GET /equivalence/{mnemonic} Return mnemonic equivalence for mnemonic.

GET /exists/{type}/{mnemonicpath} Return if mnemonic path exists in structure (exact
match). Response is true if mnemonic path exists,
false otherwise.

GET /isValidToCreate/{type}/
{mnemonicpath}

Return if name is valid to create (exact match).
Method answers question 'would it be ok to
create given name?'.

PUT Update (propose) structures by array of structure
element commands. Return array of structure
elements for updated structures (proposals).

PUT /upload Update (propose) structures by upload Excel file.
Return Excel file with structure elements for
updated structures (proposals).

DELETE Delete (propose) structures by array of structure
element commands. Return array of structure
elements for deleted structures (proposals).

DELETE /upload Delete (propose) structures by upload Excel file.
Return Excel file with structure elements for
deleted structures (proposals).

PATCH /approve Approve structures (proposals) by array of
structure element commands. Return array of
structure elements for approved structures.

Name is automatically created name when
creation of system structure is approved.

PATCH /approve/upload Approve structures (proposals) by upload Excel
file. Return Excel file with structure elements for
for approved structures.

Name is automatically created name when
creation of system structure is approved.

PATCH /cancel Cancel structures (proposals) by array of
structure element commands. Return array of
structure elements for cancelled structures.

PATCH /cancel/upload Cancel structures (proposals) by upload Excel
file. Return Excel file with structure elements for
cancelled structures.

PATCH /reject Reject structures (proposals) by array of structure
element commands. Return array of structure
elements for rejected structures.

PATCH /reject/upload Reject structures (proposals) by upload Excel file.
Return Excel file with structure elements for
rejected structures.

15

Authorization

HTTP method Authorization Description
GET Not required Read

POST, PUT, DELETE User Create, Update, Delete

PATCH Administrator Approve, Cancel, Reject

About searching
Exact match

• Is exact match = no search

Search

• Default behavior is exact match

• No regex

• Two additional characters may be used to help search and may be written anywhere in
search string to give regex-like behavior

◦ _ underscore, 0 or 1 occurrences of any character
◦ % percent, any number of any character
◦ e.g.

▪ A2T-010PRL:RFS-PRLTap-054
▪ A2T-010PRL:RFS-PRLTap-0_ will not give match
▪ A2T-010PRL:RFS-PRLTap-0__ will give match
▪ A2T-010PRL:RFS-PRL% will give match

16

About data
What is sent to and received from Naming REST API

• a string

• json

Examples

Name and NameElement

A2T-010PRL:RFS-PRLTap-054

System structure

• Accelerator

• Accelerator to Target

• 01 Phase Reference Line

Device structure

• RF Systems

• Phase Reference Line

• Phase Reference Line Tap

Index

• 054

json

• {"uuid":"07bce0ae-0947-47c8-941e-
cc76678fd29a","description":null,"status":"APPROVED","latest":true,"delete
d":false,"when":"2017-10-
20T12:53:27.229+00:00","who":"johannorin","comment":null,"systemgroup"
:null,"system":null,"subsystem":"c2fce615-ed5d-40f9-8fb5-
0b91502536e5","devicetype":"bb1e68a6-e233-4595-ae88-
f9186b6760c6","systemstructure":"A2T-010PRL","devicestructure":"RFS-
PRLTap","index":"054","name":"A2T-010PRL:RFS-PRLTap-054"}

Rules

• A name must have exactly one system structure parent, either systemgroup or
system or subsystem

• A name may have device structure parent, devicetype

In name above

• subsystem uuid refers to subsystem 01 Phase Reference Line that in turn
refers to system Accelerator to Target that in turn refers to system group
Accelerator

17

• device type uuid refers to device type Phase Reference Line Tap that in turn
refers to device group Phase Reference Line that in turn refers to discipline
RF Systems

Since name above was created, implementation of Naming was changed so that
description and comment are mandatory.

Structure and StructureElement

Accelerator to Target A2T

json

• {"uuid":"e67a497c-9c55-4942-97fc-700c8ec56031","description":"The
Accelerator to Target Station interface including the
dogleg","status":"APPROVED","latest":true,"deleted":false,"when":"2016-
07-
04T10:06:38.873+00:00","who":"danielpisofernandez","comment":"Approve
d by Daniel Piso","type":"SYSTEM","parent":"4262e1e7-2444-412e-83d7-
aeabf58262c6","name":"Accelerator to
Target","mnemonic":"A2T","mnemonicpath":"Acc-A2T","level":2}

Frequently Asked Questions (FAQ)
Topics / questions / answers, no particular order

• Capabilities of REST API
◦ All operations in Naming are available in REST API

• Json format used for data that is sent and received
◦ Data is provided or received as json, as single entry of arrays of entries,

• Retrieval available with exact match and search. Default for search is exact match but may
be adjusted for true search. Regex is not available. There are instead two special characters
to use for search and regex-like behavior.
◦ _ underscore, 0 or 1 occurrences of any character
◦ % percent, any number of any character

• Retrieval available with abilities
◦ search on individual fields
◦ sorting
◦ pagination

• Index for a name
◦ Field is alphanumerical. Existing names usually have index. Values include alphabetical,

numerical, alphanumerical. When index is to be set, it is to be set explicitly and not auto-
generated.

18

• Legacy name
◦ A legacy name is a name for which one or both parents (System structure, Device

structure) have been deleted. In current Naming, a name is deleted when a parent of
arbitrary level is deleted. This is not the intention of the latest Naming convention.
Instead the name will keep on living when one or both of its parents are deleted but the
only change that is possible is deletion. However the name will keep on living until it’s
explicitly deleted.

• History
◦ History consists of lines of uuid. The line of uuid is not broken in retrieving history. If

combination of parameters is found in name or structure entries, the entire lines of uuid
are returned.

• Validation
◦ Ability to validate modifying operation before invoḱing modifying operation. Modifying

operation internally use same validation.

Reference
Naming convention

• https://chess.esss.lu.se/enovia/link/ESS-0000757/21308.51166.45568.45993/valid

19

https://chess.esss.lu.se/enovia/link/ESS-0000757/21308.51166.45568.45993/valid

	Naming REST API – brief introduction
	Introduction
	Background
	Concepts & Terminology
	The purpose of Naming
	What is a Name?
	Visualization – names and structures
	Lifecycle for names and structures
	Vocabulary

	REST API endpoints
	Data – Access
	Healthcheck
	Report
	Names
	Path
	Authorization

	Structures
	Path
	Authorization

	About searching
	About data
	Frequently Asked Questions (FAQ)
	Reference

