Newer
Older
'''
Simple class to read in a
TraceWin distribution file
Class afterwards hold the following
dictionary items:
- x [cm]
- xp [rad]
- y [cm]
- yp [rad]
- phi [rad]
- E [MeV]
'''
def __init__(self, filename):
# easy storage..
self.filename=filename
# used to create dict behaviour..
self._columns=['x','xp','y','yp','phi','E']
# read in the file..
self._readBinaryFile()
def _readBinaryFile(self):
import numpy
fin=file(self.filename,'r')
# dummy, Np, Ib, freq, dummy
Header_type = numpy.dtype([
('dummy12', numpy.int16),
('Np', numpy.int32),
('Ib', numpy.float64),
('freq', numpy.float64),
('dummy3', numpy.int8)
])
Header=numpy.fromfile(fin, dtype=Header_type, count=1)
self.Np=Header['Np'][0]
self.Ib=Header['Ib'][0]
self.freq=Header['freq'][0]
Table=numpy.fromfile(fin, dtype=numpy.float64, count=self.Np*6)
self._data=Table.reshape(self.Np,6)
Footer=numpy.fromfile(fin, dtype=numpy.float64, count=1)
# makes the class function as a dictionary
# e.g. dst['x'] returns the x array..
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
except:
raise ValueError("Available keys: "+str(self._columns))
def __setitem__(self, key, value):
try:
i=self._columns.index(key)
self._data[:,i]=value
except:
raise ValueError("Available keys: "+str(self._columns))
def save(self, filename):
'''
Save the distribution file
so it can be read by TraceWin again
Stolen from Ryoichi's func.py (with permission)
'''
from struct import pack
fout=open(filename,'w')
out =pack('b',125)
out+=pack('b',100)
out+=pack('i',self.Np)
out+=pack('d',self.Ib)
out+=pack('d',self.freq)
out+=pack('b',125)
data=self._data.reshape(self.Np*6,1)
for x in data:
out+=pack('d',x)
out+=pack('d',self.mass)
print >>fout, out
#data.tofile(fout)
fout.close()
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
class plt:
'''
Simple class to read in a
TraceWin plot file
Class afterwards hold the following
dictionary items:
- Ne (number of locations)
- Np (number of particles)
- Ib [A] (beam current)
- freq [MHz]
- mc2 [MeV]
- Nelp [m] (locations)
each plt[i], where i is element number, holds:
- Zgen [cm] (location)
- phase0 [deg] (ref phase)
- wgen [MeV] (ref energy)
- x [array, cm]
- xp [array, rad]
- y [array, cm]
- yp [array, rad]
- phi [array, rad]
- E [array, MeV]
- l [array] (is lost)
Example::
plt=ess.TraceWin.plt('calc/dtl1.plt')
for i in [97,98]:
data=plt[i]$
if data:
print data['x']
'''
def __init__(self, filename):
# easy storage..
self.filename=filename
# used to create dict behaviour..
self._columns=['x','xp','y','yp','phi','E', 'l']
# read in the file..
self._readBinaryFile()
def _readBinaryFile(self):
# Thanks Emma!
import numpy
fin=file(self.filename,'r')
# dummy, Np, Ib, freq, dummy
Header_type = numpy.dtype([
('dummy12', numpy.int16),
('Ne', numpy.int32),
('Np', numpy.int32),
('Ib', numpy.float64),
('freq', numpy.float64),
('mc2', numpy.float64),
])
SubHeader_type = numpy.dtype([
('dummy12', numpy.int8),
('Nelp', numpy.int32),
('Zgen', numpy.float64),
('phase0', numpy.float64),
('wgen', numpy.float64),
])
Header=numpy.fromfile(fin, dtype=Header_type, count=1)
self.Np=Header['Np'][0]
self.Ne=Header['Ne'][0]
self.Ib=Header['Ib'][0]
self.freq=Header['freq'][0]
self.mc2=Header['mc2'][0]
self._data=[]
self.Nelp=[]
i=0
while i<self.Ne:
SubHeader=numpy.fromfile(fin, dtype=SubHeader_type, count=1)
i=SubHeader['Nelp'][0]
self.Nelp.append(i)
Table=numpy.fromfile(fin, dtype=numpy.float32, count=self.Np*7)
Table=Table.reshape(self.Np,7)
data={}
for key in ['Zgen','phase0','wgen']:
data[key]=SubHeader[key][0]
for j in xrange(7):
c=self._columns[j]
data[c]=Table[:,j]
self._data.append(data)
def __getitem__(self, key):
if key in self.Nelp:
i=self.Nelp.index(key)
return self._data[i]
else:
print "No data to plot at element",key
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def calc_s(self):
'''
Generates self.s which holds
the position of each element
in metres
'''
import numpy
self.s=[]
for i in self.Nelp:
self.s.append(self[i]['Zgen']/100.0)
self.s=numpy.array(self.s)
def calc_rel(self):
'''
Calculates relativistic gamma/beta
at each position, based on
AVERAGE beam energy
(NOT necessarily reference)
'''
import numpy
if not hasattr(self,'avg'):
self.calc_avg()
self.gamma=[]
self.beta=[]
for i,j in zip(self.Nelp,xrange(len(self.Nelp))):
Eavg=self.avg['E'][j]
self.gamma.append((self.mc2+Eavg)/self.mc2)
self.beta.append(numpy.sqrt(1.-1./self.gamma[-1]**2))
def calc_avg(self):
'''
Calculates averages of 6D coordinates at each
element, such that e.g.
self.avg["x"] gives average X at each location.
Units: cm
'''
import numpy
self.avg=dict(x=[], xp=[], y=[], yp=[], E=[], phi=[])
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
for i in self.Nelp:
data=self[i]
for v in vals:
self.avg[v].append(numpy.average(data[v]))
def calc_minmax(self,pmin=5,pmax=95):
'''
Calculates min/max values of beam coordinates
in percentile, pmin is lower and pmax upper.
Units: cm
'''
import numpy
self.min=dict(x=[], xp=[], y=[], yp=[], E=[])
self.max=dict(x=[], xp=[], y=[], yp=[], E=[])
for i in self.Nelp:
data=self[i]
for v in self.min.keys():
self.min[v].append(numpy.percentile(data[v],pmin))
self.max[v].append(numpy.percentile(data[v],pmax))
for v in self.min.keys():
self.min[v]=numpy.array(self.min[v])
self.max[v]=numpy.array(self.max[v])
def calc_sigma(self):
'''
Calculates the sigma matrix
Creates self.sigma such that self.sigma[i,j]
returns the sigma matrix for value i,j.
The numbering is:
0: x
1: xp
2: y
3: yp
4: E
5: phi
vals=self._columns[:-1]
self.sigma=[]
for j in xrange(len(self.Nelp)):
i=self.Nelp[j]
data=self[i]
self.sigma.append([[numpy.mean( (data[n]-self.avg[m][j]) * (data[m] - self.avg[m][j]) ) for n in vals] for m in vals])
def calc_twiss(self):
'''
Calculates emittance, beta, alfa, gamma
for each plane, x-xp, y-yp, and E-phi
self.twiss_eps=[]
for j in xrange(len(self.Nelp)):
self.twiss_eps.append([numpy.sqrt(numpy.linalg.det(self.sigma[j][i:i+2][:,i:i+2])) for i in (0,2,4)])
self.twiss_beta = [[self.sigma[j][i][i] for i in (0,2,4)] for j in xrange(len(self.Nelp))]
self.twiss_eps=numpy.array(self.twiss_eps)
self.twiss_beta=numpy.array(self.twiss_beta)
class density_file:
'''
Simple class to read a TraceWin density file
into a pythonized object
'''
def __init__(self, filename):
self.filename=filename
self.fin=file(self.filename, 'r')
# currently unknown:
self.version=0
# first we simply count how many elements we have:
counter=0
while True:
try:
self._skipAndCount()
counter+=1
except IndexError: # EOF reached..
break
if sys.flags.debug:
print "Number of steps found:", counter
self.fin.seek(0)
# set up the arrays..
self.i=0
# z position [m] :
self.z=numpy.zeros(counter)
# current [mA] :
self.ib=numpy.zeros(counter)
# number of lost particles:
self.Np=numpy.zeros(counter)
self.Xouv=numpy.zeros(counter)
self.Youv=numpy.zeros(counter)
self.moy=numpy.zeros((counter,7))
self.moy2=numpy.zeros((counter,7))
self._max=numpy.zeros((counter,7))
self._min=numpy.zeros((counter,7))
if self.version>=7:
self.rms_emit=numpy.zeros((counter,3))
self.rms_emit2=numpy.zeros((counter,3))
self.lost=numpy.zeros((counter,self.Nrun))
self.powlost=numpy.zeros((counter,self.Nrun))
self.lost2=numpy.zeros(counter)
self.Minlost=numpy.zeros(counter)
self.Maxlost=numpy.zeros(counter)
self.powlost2=numpy.zeros(counter)
self.Minpowlost=numpy.zeros(counter)
self.Maxpowlost=numpy.zeros(counter)
while self.i<counter:
self._getFullContent()
self.i+=1
def _getHeader(self):
import numpy
# header..
version=numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
year=numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
# there is much more data written, but it is undocumented. Our trick to get back "on line":
shift=0
while year!=2011 or version!=8:
shift+=1
version=year
year=numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
self.vlong=numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
self.Nrun=numpy.fromfile(self.fin, dtype=numpy.int32, count=1)[0]
if shift:
raise ValueError("ERROR, shifted "+str(shift*2)+" bytes")
self.version=version
self.year=year
def _skipAndCount(self):
import numpy
self._getHeader()
if self.version==8:
numpy.fromfile(self.fin, dtype=numpy.int16, count=8344/2)
if self.Nrun>1:
#WARN not 100% sure if this is correct..
numpy.fromfile(self.fin, dtype=numpy.int16, count=((5588+self.Nrun*12)/2))
def _get_7dim_array(array):
return dict(x=array[0],
y=array[1],
phase=array[2],
energy=array[3],
r=array[4],
z=array[5],
dpp=array[6],
)
def _getFullContent(self):
import numpy
#self._getHeader()
# no need to read the header again:
# (though only if we are SURE about content!)
numpy.fromfile(self.fin, dtype=numpy.int16, count=5)
nelp=numpy.fromfile(self.fin, dtype=numpy.int32, count=1)[0]
self.ib[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.z[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
# Aperture
self.Xouv[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.Youv[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
step=numpy.fromfile(self.fin, dtype=numpy.int32, count=1)[0]
n=7 # x [m], y[m], Phase [deg], Energy [MeV], R[m], Z[m], dp/p
self.moy[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
self.moy2[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
self._max[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
self._min[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
if self.version>=5:
rms=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
rms_size2=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
if self.version>=6:
min_pos_moy=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
max_pos_moy=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
if self.version>=7:
self.rms_emit[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=3)[:]
self.rms_emit2[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=3)[:]
if self.version>=8:
e_ouv=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)
phase_ouv_pos=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)
phase_ouv_neg=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)
self.Np[self.i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
if self.Np[self.i]:
powlost=numpy.zeros(self.Nrun)
for i in xrange(self.Nrun):
self.lost[self.i,i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.powlost[self.i,i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.lost2[self.i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.Minlost[self.i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.Maxlost[self.i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.powlost2[self.i]=numpy.fromfile(self.fin, dtype=numpy.float64, count=1)[0]
self.Minpowlost[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.Maxpowlost[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
tab=numpy.fromfile(self.fin, dtype=numpy.uint64, count=n*step)
tab=numpy.fromfile(self.fin, dtype=numpy.uint32, count=n*step)
tabp=numpy.fromfile(self.fin, dtype=numpy.uint32, count=3*step)
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
class remote_data_merger:
def __init__(self, base='.'):
self._base=base
self._files=[]
def add_file(self,filepath):
import os
if os.path.exists(filepath):
fname=filepath
else:
fullpath=os.path.join(self._base,filepath)
if os.path.exists(fullpath):
fname=fullpath
else:
raise ValueError("Could not find file "+filepath)
if fname not in self._files:
self._files.append(fname)
def generate_partran_out(self,filename=None):
'''
Creates a string to be written to file
each line is a list.
If filename is given, writes directly to output file.
'''
import numpy as np
h1=[]
h2=[]
d1=[]
d2=[]
d3=[]
if self._files:
for f in self._files:
string=file(f,'r').read()
split=string.split('$$$')
if split[9]!='Data_Error':
raise ValueError("Magic problem, please complain to Yngve")
thisdata=split[10].strip().split('\n')
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
if not h1:
h1=[thisdata[0]+" (std in paranthesis)"]
h2=thisdata[2:10]
d1.append(thisdata[1].split())
d2.append(thisdata[10])
d3.append(thisdata[11])
# fix d1:
for i in xrange(len(d1)):
for j in xrange(len(d1[0])):
d1[i][j]=float(d1[i][j])
d1=np.array(d1)
means=d1.mean(axis=0)
stds=d1.std(axis=0)
d1=[]
for i in xrange(len(stds)):
if stds[i]/means[i]<1e-10:
stds[i]=0.0
for i in xrange(len(stds)):
# some small std are removed..
if stds[i]/means[i]>1e-8:
d1.append('%f(%f)' % (means[i],stds[i]))
else: #error is 0
d1.append(str(means[i]))
d1=[' '.join(d1)]
# create data:
data=h1+d1+h2+d2+d3
if filename:
file(filename,'w').write('\n'.join(data))
return data
'''
Read partran1.out files..
'''
def __init__(self,filename):
self.filename=filename
self._readAsciiFile()
def _readAsciiFile(self):
import numpy
stream=file(self.filename,'r')
for i in xrange(10):
line=stream.readline()
self._dict={}
for i in xrange(len(self.columns)):
self[self.columns[i]]=self.data[:,i]