Newer
Older
path_name_lat = "lattice.dat"
path_name_lat_tmp = "lattice_tmp.dat"
# -- Pick up the line # (I'm calling "idx") and elem # (I'm calling "idx_elem") of SPK field maps
if lat_i.typ == "FIELD_MAP":
if lat_i.name_fmap == "Spoke_W_coupler":
idx_elem_spk.append(lat_i.idx_elem)
# # This does the same thing...
# for i in range(len(lat.lst)):
# if lat.lst[i].typ=='FIELD_MAP':
# if lat.lst[i].name_fmap=='Spoke_W_coupler':
# idx_spk.append(i)
# idx_elem_spk.append(lat.lst[i].idx_elem)
print("idx (line #) of SPK field maps (starting from 0):")
print(idx_spk, "\n")
print("idx_elem (elem # of) SPK field maps (starting from 0):")
print(idx_elem_spk, "\n")
# -- Give a name "SPK2" to the 2nd SPK and pick up its idx and idx_elem from the name
if lat_i.name == "SPK2":
idx_spk2 = lat_i.idx
idx_elem_spk2 = lat_i.idx_elem
print("idx (line #) of 2nd SPK:", idx_spk2)
print("idx_elem (elem #) of 2nd SPK:", idx_elem_spk2, "\n")
err_comm_name = "MY_ERROR_COMMAND"
err_comm_typ = (
"ERROR_CAV_NCPL_STAT" # I know it's redundant but we also need this for now...
)
err_comm_para = [0, 0, 0, 0, 0, 0, 0, 0, 0] # This also works: err_comm_para=[0]*100
err_comm = lib_tw.ERROR_CAV_NCPL_STAT(err_comm_name, err_comm_typ, err_comm_para)
print("This is how it looks in the TraceWin syntax:")
print(err_comm.get_tw(), "\n")
err_comm.typ_dist = "0" # To make sure the dist type is constant
err_comm.E = 2e-2 # To introduce 2% field error
err_comm.phs_rf = 3.0 * np.pi / 180.0 # To introduce 3 deg phase error
print("This is how the command looks after the changes:")
print(err_comm.get_tw(), "\n")
# -- Insert the command in front of the 2nd SPK with the index "idx_spk2"
print("This is how the lattice looks around the 2nd SPK looks originally:")
for i in range(idx_spk2 - 2, idx_spk2 + 3):
print(lat.lst[i].get_tw())
print("")
lat.lst.insert(idx_spk[1], err_comm) # This does the insertion
lat.update_idx() # "magic word" to update idx and idx_elem
# Update idx and idx_elem of SPK2
for lat_i in lat.lst:
if lat_i.name == "SPK2":
idx_spk2 = lat_i.idx
idx_elem_spk2 = lat_i.idx_elem
print("idx (line #) of 2nd SPK after the insertion:", idx_spk2)
print("idx_elem (elem #) of 2nd SPK after the insertion:", idx_elem_spk2, "\n")
print("Note idx is +1 but no change for idx_elem (since we inserted a command).\n")
print("This is how the lattice looks around the 2nd SPK after the change:")
for i in range(idx_spk2 - 2, idx_spk2 + 3):
print(lat.lst[i].get_tw())
print("")
# Indices of steerers (can be done with names??) and append max to THIN_STEERING
idx_st_x: List[int] = []
idx_st_y: List[int] = []
for i in range(len(lat.lst)):
# STEERER
if lat.lst[j].typ == "ADJUST_STEERER":
idx_st_x.append(i)
idx_st_y.append(i)
break
if lat.lst[j].typ == "ADJUST_STEERER_BY":
idx_st_x.append(i)
break
if lat.lst[j].typ == "ADJUST_STEERER_BX":
idx_st_y.append(i)
break
if lat.lst[j].idx_elem != lat.lst[i].idx_elem:
break
# THIN_STEERING (assuming the same for x and y for the dual plane ones)
if lat.lst[j].typ == "ADJUST":
lat.lst[i].max = lat.lst[j].max
if lat.lst[j].var == 1:
idx_st_y.append(i)
if lat.lst[j].var == 2:
idx_st_x.append(i)
if lat.lst[j].idx_elem != lat.lst[i].idx_elem - 1:
break
# Indices of physical steerer locations for STEERER (later to extract L and s)
if lat.lst[i].typ == "THIN_STEERING":
idx_st_x_elem.append(i)
if lat.lst[i].typ == "STEERER":
for j in range(i + 1, len(lat.lst)):
if lat.lst[j].idx_elem == lat.lst[i].idx_elem + 1:
idx_st_x_elem.append(j)
break
idx_st_y_elem = []
if lat.lst[i].typ == "THIN_STEERING":
idx_st_y_elem.append(i)
if lat.lst[i].typ == "STEERER":
for j in range(i + 1, len(lat.lst)):
if lat.lst[j].idx_elem == lat.lst[i].idx_elem + 1:
idx_st_y_elem.append(j)
break
for i in set(idx_st_x + idx_st_y):
if lat.lst[i].max <= 0:
print(
"Max B/BL not defined for elem #",
str(lat.lst[i].idx_elem + 1),
". Exiting...",
)
exit()
idx_bpm_x = [i for i in range(len(lat.lst)) if lat.lst[i].typ == "DIAG_POSITION"]
idx_bpm_y = idx_bpm_x[:]
###########################################################################
# Remove redundant BPMs to avoid over-constraint (not necessarily generic...)
if len([i for i in idx_st_x if i < idx_bpm_x[k]]) < k + 1:
del idx_bpm_x[k]
else:
k += 1
k = 0
if len([i for i in idx_st_y if i < idx_bpm_y[k]]) < k + 1:
del idx_bpm_y[k]
else:
k += 1
###########################################################################
idx_elem_bpm_x = [lat.lst[i].idx_elem for i in idx_bpm_x]
idx_elem_bpm_y = [lat.lst[i].idx_elem for i in idx_bpm_y]
###########################################################################
# To do 1-to-1 with the "twist" pattern
# idx_elem_bpm[7],idx_elem_bpm[8]=idx_elem_bpm[8],idx_elem_bpm[7]
###########################################################################
# YL comment: code below is broken (step_x, step_y, Nrun and more not defined)
# Commented out so the flake8 test doesn't fail
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# # -- Define indices for blocks of R-matrix from "step" (may be too much...)
# block_x = []
# for k in range(len(step_x) + 1):
# if int(sum(step_x[:k])) >= len(idx_bpm_x):
# block_x.append(len(idx_bpm_x))
# break
# else:
# block_x.append(int(sum(step_x[:k])))
# if block_x[-1] < len(idx_bpm_x):
# block.append(len(idx_bpm_x))
# block_y = []
# for k in range(len(step_y) + 1):
# if int(sum(step_y[:k])) >= len(idx_bpm_y):
# block_y.append(len(idx_bpm_y))
# break
# else:
# block_y.append(int(sum(step_y[:k])))
# if block_y[-1] < len(idx_bpm_y):
# block.append(len(idx_bpm_y))
# # -- R matrix
# Rx = Pool(Ncpu).map(Rx_column, range(len(idx_st_x)))
# Ry = Pool(Ncpu).map(Ry_column, range(len(idx_st_y)))
# Rx = np.array(Rx).transpose()
# Ry = np.array(Ry).transpose()
# if len(Rx) > len(Rx[0]):
# print("[# of BPMs] > [# of steerers] for x, exiting...")
# exit()
# if len(Ry) > len(Ry[0]):
# print("[# of BPMs] > [# of steerers] for y, exiting...")
# exit()
# if len(Rx) < len(Rx[0]):
# print("[# of BPMs] < [# of steerers] for x, exiting...")
# exit()
# if len(Ry) < len(Ry[0]):
# print("[# of BPMs] < [# of steerers] for y, exiting...")
# exit()
# # -- Main part
# data = Pool(Ncpu).map(job, range(Nrun))
# data = np.array(data).transpose()
# s = data[0][0]
# x = np.array(data[1].tolist()).transpose() # array not applied to the 3rd level ??
# y = np.array(data[2].tolist()).transpose() # array not applied to the 3rd level ??
# BLy = np.array(data[3].tolist()).transpose() # array not applied to the 3rd level ??
# BLx = np.array(data[4].tolist()).transpose() # array not applied to the 3rd level ??
# # -- Writing
# # x
# with open("x.out", "w") as file:
# # Header
# file.write("s ")
# for n in range(Nrun):
# file.write("x%03d " % n)
# file.write("\n")
# # Data
# for k in range(len(s)):
# file.write("%.4f " % s[k])
# for n in range(Nrun):
# file.write("%.5f " % x[k][n])
# file.write("\n")
# # y
# with open("y.out", "w") as file:
# # Header
# file.write("s ")
# for n in range(Nrun):
# file.write("y%03d " % n)
# file.write("\n")
# # Data
# for k in range(len(s)):
# file.write("%.4f " % s[k])
# for n in range(Nrun):
# file.write("%.5f " % y[k][n])
# file.write("\n")
# # x steering (BLy [Gm])
# with open("st.x.out", "w") as file:
# # Header
# file.write("## s ")
# for n in range(Nrun):
# file.write("BLy%03d " % n)
# file.write("\n")
# # Data
# for k in range(len(idx_st_x)):
# file.write("%03d " % (k + 1) + "%.4f " % lat.lst[idx_st_x_elem[k]].s)
# for n in range(Nrun):
# file.write("%.4f " % (1e4 * BLy[k][n]))
# file.write("\n")
# # y steering (BLx [Gm])
# with open("st.y.out", "w") as file:
# # Header
# file.write("## s ")
# for n in range(Nrun):
# file.write("BLx%03d " % n)
# file.write("\n")
# # Data
# for k in range(len(idx_st_y)):
# file.write("%03d " % (k + 1) + "%.4f " % lat.lst[idx_st_y_elem[k]].s)
# for n in range(Nrun):
# file.write("%.4f " % (1e4 * BLx[k][n]))
# file.write("\n")
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# -- Ending
# -- Obsolete
# def job(n):
# '''
# Arbitrary x step correction for the random seed seed[n].
# '''
# # Indices of sub-matrices, e.g., step=[8,7] => block=[8,15]
# block=[]
# for k in range(len(step)+1):
# if int(sum(step[:k]))>=len(idx_elem_bpm): block.append(len(idx_elem_bpm )); break
# else : block.append(int(sum(step[:k])))
# if block[-1]<len(idx_elem_bpm): block.append(len(idx_elem_bpm))
# # Define child calc dir
# path_cal_n=path_cal+'/tmp_'+str(n)
# # Set-up TraceWin
# opt_tw=setup_tw(path_cal_n,seed[n])
# lat_n =LATTICE(path_cal_n+'/'+file_name_lat[::-1].partition('/')[0][::-1],[])
# # Loop for steps
# for b in range(len(block)-1):
# # Borders of the sub-matrix
# k0=block[b]; k1=block[b+1]
# # Intermediate trajectory
# lat_n.get_tw(path_cal_n+'/'+file_name_lat[::-1].partition('/')[0][::-1])
# call(opt_tw,shell=True)
# tw=PARTRAN(path_cal_n+'/tracewin.out')
# # Temp R matrices, using only the [k0,k1-1] block
# Rx_k=zeros((len(Rx),len(Rx[0]))); Rx_k[k0:k1,k0:k1]=Rx[k0:k1,k0:k1] # Can't do this with a list
# Ry_k=zeros((len(Ry),len(Ry[0]))); Ry_k[k0:k1,k0:k1]=Ry[k0:k1,k0:k1] # Can't do this with a list
# # Correction
# st_x_nom=lstsq(Rx_k,[-tw.x[i] for i in idx_elem_bpm])[0] # Can include BPM error here
# st_y_nom=lstsq(Ry_k,[-tw.y[i] for i in idx_elem_bpm])[0] # Can include BPM error here
# # Apply correction
# for k in range(k0,k1):
# i=idx_st_x[k]; st_x=st_x_nom[k]*lat.lst[i].max
# if lat_n.lst[i].typ=='STEERER' : lat_n.lst[i].By =st_x
# if lat_n.lst[i].typ=='THIN_STEERING': lat_n.lst[i].BLy=st_x
# i=idx_st_y[k]; st_y=st_y_nom[k]*lat.lst[i].max
# if lat_n.lst[i].typ=='STEERER' : lat_n.lst[i].Bx =st_y
# if lat_n.lst[i].typ=='THIN_STEERING': lat_n.lst[i].BLx=st_y
# # Trajectory after correction
# lat_n.get_tw(path_cal_n+'/'+file_name_lat[::-1].partition('/')[0][::-1])
# call(opt_tw,shell=True)
# tw=PARTRAN(path_cal_n+'/tracewin.out')
# # Save steering strengths
# BLy=[]; BLx=[]
# for k in range(len(idx_st_x)):
# i=idx_st_x[k]; j=idx_st_x_elem[k]
# if lat_n.lst[i].typ=='STEERER' : BLy.append(lat_n.lst[i].By *lat_n.lst[j].L)
# if lat_n.lst[i].typ=='THIN_STEERING': BLy.append(lat_n.lst[i].BLy )
# for k in range(len(idx_st_y)):
# i=idx_st_y[k]; j=idx_st_y_elem[k]
# if lat_n.lst[i].typ=='STEERER' : BLx.append(lat_n.lst[i].Bx *lat_n.lst[j].L)
# if lat_n.lst[i].typ=='THIN_STEERING': BLx.append(lat_n.lst[i].BLx )
# # Clean
# call('rm -rf '+path_cal_n,shell=True)
# print 'job #'+str(n)+' done.'
# return [tw.s,tw.x,tw.y,BLy,BLx]