Newer
Older
'''
Simple class to read in a
TraceWin distribution file
Class afterwards hold the following
dictionary items:
def __init__(self, filename):
# easy storage..
self.filename=filename
# used to create dict behaviour..
self._columns=['x','xp','y','yp','phi','E']
# read in the file..
self._readBinaryFile()
def _readBinaryFile(self):
import numpy
fin=file(self.filename,'r')
# dummy, Np, Ib, freq, dummy
Header_type = numpy.dtype([
('dummy12', numpy.int16),
('Np', numpy.int32),
('Ib', numpy.float64),
('freq', numpy.float64),
('dummy3', numpy.int8)
])
Header=numpy.fromfile(fin, dtype=Header_type, count=1)
self.Np=Header['Np'][0]
self.Ib=Header['Ib'][0]
self.freq=Header['freq'][0]
Table=numpy.fromfile(fin, dtype=numpy.float64, count=self.Np*6)
self._data=Table.reshape(self.Np,6)
# convert x,y from cm to m:
self._data[:,0]*=1e-2
self._data[:,2]*=1e-2
Footer=numpy.fromfile(fin, dtype=numpy.float64, count=1)
# makes the class function as a dictionary
# e.g. dst['x'] returns the x array..
except:
raise ValueError("Available keys: "+str(self._columns))
def __setitem__(self, key, value):
try:
i=self._columns.index(key)
self._data[:,i]=value
except:
raise ValueError("Available keys: "+str(self._columns))
def save(self, filename):
'''
Save the distribution file
so it can be read by TraceWin again
Stolen from Ryoichi's func.py (with permission)
'''
from struct import pack
fout=open(filename,'w')
out =pack('b',125)
out+=pack('b',100)
out+=pack('i',self.Np)
out+=pack('d',self.Ib)
out+=pack('d',self.freq)
out+=pack('b',125)
data=self._data.copy()
# convert x,y from m to cm:
data[:,0]*=1e2
data[:,2]*=1e2
out+=pack('d',self.mass)
print >>fout, out
#data.tofile(fout)
fout.close()
class plt:
'''
Simple class to read in a
TraceWin plot file
Class afterwards hold the following
dictionary items:
- Ne (number of locations)
- Np (number of particles)
- Ib [A] (beam current)
- freq [MHz]
- mc2 [MeV]
- Nelp [m] (locations)
each plt[i], where i is element number, holds:
- Zgen [cm] (location)
- phase0 [deg] (ref phase)
- wgen [MeV] (ref energy)
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
- yp [array, rad]
- phi [array, rad]
- E [array, MeV]
- l [array] (is lost)
Example::
plt=ess.TraceWin.plt('calc/dtl1.plt')
for i in [97,98]:
data=plt[i]$
if data:
print data['x']
'''
def __init__(self, filename):
# easy storage..
self.filename=filename
# used to create dict behaviour..
self._columns=['x','xp','y','yp','phi','E', 'l']
# read in the file..
self._readBinaryFile()
def _readBinaryFile(self):
# Thanks Emma!
import numpy
fin=file(self.filename,'r')
# dummy, Np, Ib, freq, dummy
Header_type = numpy.dtype([
('dummy12', numpy.int16),
('Ne', numpy.int32),
('Np', numpy.int32),
('Ib', numpy.float64),
('freq', numpy.float64),
('mc2', numpy.float64),
])
SubHeader_type = numpy.dtype([
('dummy12', numpy.int8),
('Nelp', numpy.int32),
('Zgen', numpy.float64),
('phase0', numpy.float64),
('wgen', numpy.float64),
])
Header=numpy.fromfile(fin, dtype=Header_type, count=1)
self.Np=Header['Np'][0]
self.Ne=Header['Ne'][0]
self.Ib=Header['Ib'][0]
self.freq=Header['freq'][0]
self.mc2=Header['mc2'][0]
self._data=[]
self.Nelp=[]
i=0
while i<self.Ne:
SubHeader=numpy.fromfile(fin, dtype=SubHeader_type, count=1)
i=SubHeader['Nelp'][0]
self.Nelp.append(i)
Table=numpy.fromfile(fin, dtype=numpy.float32, count=self.Np*7)
Table=Table.reshape(self.Np,7)
data={}
for key in ['Zgen','phase0','wgen']:
data[key]=SubHeader[key][0]
for j in xrange(7):
c=self._columns[j]
data[c]=Table[:,j]
# convert x,y from cm to m
if c in ['x', 'y']:
data[c]*=1e-2
self._data.append(data)
def __getitem__(self, key):
if key in self.Nelp:
ret={}
# some particles are lost, exclude those:
lost_mask=self._data[i]['l']==0
for key in self._data[i]:
if isinstance(self._data[i][key], numpy.ndarray):
ret[key]=self._data[i][key][lost_mask]
else:
ret[key]=self._data[i][key]
return ret
else:
print "No data to plot at element",key
def calc_s(self):
'''
Generates self.s which holds
the position of each element
in metres
'''
import numpy
self.s=[]
for i in self.Nelp:
self.s.append(self[i]['Zgen']/100.0)
self.s=numpy.array(self.s)
def calc_avg(self):
'''
Calculates averages of 6D coordinates at each
element, such that e.g.
self.avg["x"] gives average X at each location.
'''
import numpy
self.avg=dict(x=[], xp=[], y=[], yp=[], E=[], phi=[])
for i in self.Nelp:
data=self[i]
for v in vals:
self.avg[v].append(numpy.average(data[v]))
Calculates relativistic gamma/beta
at each position, based on
AVERAGE beam energy
(NOT necessarily reference)
if not hasattr(self,'avg'):
self.calc_avg()
self.gamma=[]
self.beta=[]
for i,j in zip(self.Nelp,xrange(len(self.Nelp))):
Eavg=self.avg['E'][j]
self.gamma.append((self.mc2+Eavg)/self.mc2)
self.beta.append(numpy.sqrt(1.-1./self.gamma[-1]**2))
self.gamma=numpy.array(self.gamma)
self.beta=numpy.array(self.beta)
def calc_minmax(self,pmin=5,pmax=95):
'''
Calculates min/max values of beam coordinates
in percentile, pmin is lower and pmax upper.
Units: cm
'''
import numpy
self.min=dict(x=[], xp=[], y=[], yp=[], E=[])
self.max=dict(x=[], xp=[], y=[], yp=[], E=[])
for i in self.Nelp:
data=self[i]
for v in self.min.keys():
self.min[v].append(numpy.percentile(data[v],pmin))
self.max[v].append(numpy.percentile(data[v],pmax))
for v in self.min.keys():
self.min[v]=numpy.array(self.min[v])
self.max[v]=numpy.array(self.max[v])
def calc_sigma(self):
'''
Calculates the sigma matrix
Creates self.sigma such that self.sigma[i,j]
returns the sigma matrix for value i,j.
The numbering is:
0: x
1: xp
2: y
3: yp
4: E
5: phi
vals=self._columns[:-1]
self.sigma=[]
for j in xrange(len(self.Nelp)):
i=self.Nelp[j]
data=self[i]
self.sigma.append([[numpy.mean( (data[n]-self.avg[n][j]) * (data[m] - self.avg[m][j]) ) for n in vals] for m in vals])
def calc_std(self):
'''
Calculates the beam sizes
'''
import numpy
if not hasattr(self,'sigma'):
self.calc_sigma()
vals=self._columns[:-1]
self.std={}
for j in xrange(len(vals)):
v=vals[j]
self.std[v]=numpy.sqrt(self.sigma[:,j,j])
def calc_twiss(self):
'''
Calculates emittance, beta, alfa, gamma
for each plane, x-xp, y-yp, and E-phi
if not hasattr(self,'gamma'):
self.calc_rel()
self.twiss_eps=[]
for j in xrange(len(self.Nelp)):
self.twiss_eps.append([numpy.sqrt(numpy.linalg.det(self.sigma[j][i:i+2][:,i:i+2])) for i in (0,2,4)])
self.twiss_eps=numpy.array(self.twiss_eps)
# Calculate normalized emittance:
# TODO: this is NOT correct normalization for longitudinal
self.twiss_eps_normed=self.twiss_eps.copy()
for i in xrange(3):
self.twiss_eps_normed[:,i]*=self.gamma*self.beta
# Calculate beta:
# This is a factor 10 different from what TraceWin plots
self.twiss_beta = [[self.sigma[j][i][i]/self.twiss_eps[j,i/2] for i in (0,2,4)] for j in xrange(len(self.Nelp))]
self.twiss_beta = numpy.array(self.twiss_beta)
# Calculate alpha:
self.twiss_alpha = [[-self.sigma[j][i][i+1]/self.twiss_eps[j,i/2] for i in (0,2,4)] for j in xrange(len(self.Nelp))]
self.twiss_alpha = numpy.array(self.twiss_alpha)
class density_file:
'''
Simple class to read a TraceWin density file
into a pythonized object
'''
def __init__(self, filename):
self.filename=filename
self.fin=file(self.filename, 'r')
# currently unknown:
self.version=0
# first we simply count how many elements we have:
counter=0
while True:
try:
self._skipAndCount()
counter+=1
except IndexError: # EOF reached..
break
if sys.flags.debug:
print "Number of steps found:", counter
self.fin.seek(0)
# set up the arrays..
self.i=0
# z position [m] :
self.z=numpy.zeros(counter)
# current [mA] :
self.ib=numpy.zeros(counter)
# number of lost particles:
self.Np=numpy.zeros(counter)
self.Xouv=numpy.zeros(counter)
self.Youv=numpy.zeros(counter)
self.moy=numpy.zeros((counter,7))
self.moy2=numpy.zeros((counter,7))
self._max=numpy.zeros((counter,7))
self._min=numpy.zeros((counter,7))
if self.version>=7:
self.rms_emit=numpy.zeros((counter,3))
self.rms_emit2=numpy.zeros((counter,3))
self.lost=numpy.zeros((counter,self.Nrun))
self.powlost=numpy.zeros((counter,self.Nrun))
self.lost2=numpy.zeros(counter)
self.Minlost=numpy.zeros(counter)
self.Maxlost=numpy.zeros(counter)
self.powlost2=numpy.zeros(counter)
self.Minpowlost=numpy.zeros(counter)
self.Maxpowlost=numpy.zeros(counter)
while self.i<counter:
self._getFullContent()
self.i+=1
def _getHeader(self):
import numpy
# header..
version=numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
year=numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
# there is much more data written, but it is undocumented. Our trick to get back "on line":
shift=0
while year!=2011 or version!=8:
shift+=1
version=year
year=numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
self.vlong=numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
self.Nrun=numpy.fromfile(self.fin, dtype=numpy.int32, count=1)[0]
if shift:
raise ValueError("ERROR, shifted "+str(shift*2)+" bytes")
self.version=version
self.year=year
def _skipAndCount(self):
import numpy
self._getHeader()
if self.version==8:
numpy.fromfile(self.fin, dtype=numpy.int16, count=8344/2)
if self.Nrun>1:
#WARN not 100% sure if this is correct..
numpy.fromfile(self.fin, dtype=numpy.int16, count=((5588+self.Nrun*12)/2))
def _get_7dim_array(array):
return dict(x=array[0],
y=array[1],
phase=array[2],
energy=array[3],
r=array[4],
z=array[5],
dpp=array[6],
)
def _getFullContent(self):
import numpy
#self._getHeader()
# no need to read the header again:
# (though only if we are SURE about content!)
numpy.fromfile(self.fin, dtype=numpy.int16, count=5)
nelp=numpy.fromfile(self.fin, dtype=numpy.int32, count=1)[0]
self.ib[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.z[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
# Aperture
self.Xouv[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.Youv[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
step=numpy.fromfile(self.fin, dtype=numpy.int32, count=1)[0]
n=7 # x [m], y[m], Phase [deg], Energy [MeV], R[m], Z[m], dp/p
self.moy[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
self.moy2[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
self._max[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
self._min[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
if self.version>=5:
rms=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
rms_size2=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
if self.version>=6:
min_pos_moy=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
max_pos_moy=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
if self.version>=7:
self.rms_emit[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=3)[:]
self.rms_emit2[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=3)[:]
if self.version>=8:
e_ouv=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)
phase_ouv_pos=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)
phase_ouv_neg=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)
self.Np[self.i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
if self.Np[self.i]:
powlost=numpy.zeros(self.Nrun)
for i in xrange(self.Nrun):
self.lost[self.i,i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.powlost[self.i,i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.lost2[self.i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.Minlost[self.i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.Maxlost[self.i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.powlost2[self.i]=numpy.fromfile(self.fin, dtype=numpy.float64, count=1)[0]
self.Minpowlost[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.Maxpowlost[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
tab=numpy.fromfile(self.fin, dtype=numpy.uint64, count=n*step)
tab=numpy.fromfile(self.fin, dtype=numpy.uint32, count=n*step)
tabp=numpy.fromfile(self.fin, dtype=numpy.uint32, count=3*step)
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
class remote_data_merger:
def __init__(self, base='.'):
self._base=base
self._files=[]
def add_file(self,filepath):
import os
if os.path.exists(filepath):
fname=filepath
else:
fullpath=os.path.join(self._base,filepath)
if os.path.exists(fullpath):
fname=fullpath
else:
raise ValueError("Could not find file "+filepath)
if fname not in self._files:
self._files.append(fname)
def generate_partran_out(self,filename=None):
'''
Creates a string to be written to file
each line is a list.
If filename is given, writes directly to output file.
'''
import numpy as np
h1=[]
h2=[]
d1=[]
d2=[]
d3=[]
if self._files:
for f in self._files:
string=file(f,'r').read()
split=string.split('$$$')
if split[9]!='Data_Error':
raise ValueError("Magic problem, please complain to Yngve")
thisdata=split[10].strip().split('\n')
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
if not h1:
h1=[thisdata[0]+" (std in paranthesis)"]
h2=thisdata[2:10]
d1.append(thisdata[1].split())
d2.append(thisdata[10])
d3.append(thisdata[11])
# fix d1:
for i in xrange(len(d1)):
for j in xrange(len(d1[0])):
d1[i][j]=float(d1[i][j])
d1=np.array(d1)
means=d1.mean(axis=0)
stds=d1.std(axis=0)
d1=[]
for i in xrange(len(stds)):
if stds[i]/means[i]<1e-10:
stds[i]=0.0
for i in xrange(len(stds)):
# some small std are removed..
if stds[i]/means[i]>1e-8:
d1.append('%f(%f)' % (means[i],stds[i]))
else: #error is 0
d1.append(str(means[i]))
d1=[' '.join(d1)]
# create data:
data=h1+d1+h2+d2+d3
if filename:
file(filename,'w').write('\n'.join(data))
return data
'''
Read partran1.out files..
'''
def __init__(self,filename):
self.filename=filename
self._readAsciiFile()
def _readAsciiFile(self):
import numpy
stream=file(self.filename,'r')
for i in xrange(10):
line=stream.readline()
self._dict={}
for i in xrange(len(self.columns)):
self[self.columns[i]]=self.data[:,i]