Newer
Older
'''
Simple class to read in a
TraceWin distribution file
Class afterwards hold the following
dictionary items:
- E [MeV] (kinetic energy)
def __init__(self, filename):
# easy storage..
self.filename=filename
# used to create dict behaviour..
self._columns=['x','xp','y','yp','phi','E']
# read in the file..
self._readBinaryFile()
def append(self,x=0.0,xp=0.0,y=0.0,yp=0.0,E=0.0,phi=0.0):
'''
Append one particle to the distribution
- Kinetic Energy in MeV
- x,y in m
- xp,yp in rad
- phi in rad
'''
import numpy
self._data=numpy.append(self._data, [[x,xp,y,yp,phi,E]], 0)
self.Np+=1
def remove(self, i=None):
'''
Removes all particles from the distribution, or the line specified by i
'''
import numpy
if i==None:
self._data=numpy.delete(self._data,numpy.s_[:],0)
self.Np=0
else:
self._data=numpy.delete(self._data,i,0)
self.Np-=1
import numpy
fin=file(self.filename,'r')
# dummy, Np, Ib, freq, dummy
Header_type = numpy.dtype([
('dummy12', numpy.int16),
('Np', numpy.int32),
('Ib', numpy.float64),
('freq', numpy.float64),
('dummy3', numpy.int8)
])
Header=numpy.fromfile(fin, dtype=Header_type, count=1)
self.Np=Header['Np'][0]
self.Ib=Header['Ib'][0]
self.freq=Header['freq'][0]
# Some toutatis distributions has an undocumented 7th line of 0's
Table=numpy.fromfile(fin, dtype=numpy.float64, count=self.Np*7+1)
if len(Table)==self.Np*7+1:
self._data=Table[:-1].reshape(self.Np,7)
elif len(Table)==self.Np*6+1: # this is true in most cases
self._data=Table[:-1].reshape(self.Np,6)
else:
raise ValueError("Incorrect table dimensions found:",len(Table))
# convert x,y from cm to m:
self._data[:,0]*=1e-2
self._data[:,2]*=1e-2
# makes the class function as a dictionary
# e.g. dst['x'] returns the x array..
except:
raise ValueError("Available keys: "+str(self._columns))
def __setitem__(self, key, value):
try:
i=self._columns.index(key)
self._data[:,i]=value
except:
raise ValueError("Available keys: "+str(self._columns))
def save(self, filename, toutatis=False):
'''
Save the distribution file
so it can be read by TraceWin again
:param filename: Name of file
:param toutatis: Include 7th column of zeros
Stolen from Ryoichi's func.py (with permission)
'''
from struct import pack
fout=open(filename,'w')
out =pack('b',125)
out+=pack('b',100)
out+=pack('i',self.Np)
out+=pack('d',self.Ib)
out+=pack('d',self.freq)
out+=pack('b',125)
if toutatis and data.shape[1]==6:
data=numpy.append(data,numpy.zeros((len(data),1)),1)
elif not toutatis and data.shape[1]==7:
data=data[:,:-1]
# convert x,y from m to cm:
data[:,0]*=1e2
data[:,2]*=1e2
if toutatis:
data=data.reshape(self.Np*7,1)
else:
data=data.reshape(self.Np*6,1)
out+=pack('d',self.mass)
print >>fout, out
fout.close()
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
def subplot(self, index, x, y, nb=100, mask=None):
'''
Create a subplot histogram similar to TraceWin.
Example::
import numpy as np
from ess import TraceWin
from matplotlib import pyplot as plt
data=TraceWin.dst('part_dtl1.dst')
m=np.where(data['E']>3.5)
data.subplot(221,'x','xp',mask=m)
data.subplot(222,'y','yp',mask=m)
data.subplot(223,'phi','E',mask=m)
data.subplot(224,'x','y',mask=m)
plt.show()
'''
from matplotlib.colors import LogNorm
import matplotlib.pyplot as plt
import numpy as np
units={ 'x': 'mm', 'y': 'mm',
'xp': 'mrad', 'yp': 'mrad',
'E': 'MeV', 'phi': 'deg'
}
# get X and Y data
dx=self[x]
dy=self[y]
if mask!=None:
dx=dx[mask]
dy=dy[mask]
if x in ['x','y','xp','yp']:
dx*=1e3
if y in ['x','y','xp','yp']:
dy*=1e3
if x in ['phi']:
dx-=np.average(dx)
dx*=180/np.pi
if y in ['phi']:
dy-=np.average(dy)
dy*=180/np.pi
plt.subplot(index)
plt.hist2d(dx, dy, bins=nb, norm=LogNorm())
plt.title('{} [{}] - {} [{}]'.format(x,units[x],y,units[y]))
hist,bin_edges=np.histogram(dx,bins=nb)
b=bin_edges[:-1]+0.5*(bin_edges[1]-bin_edges[0])
plt.plot(b,hist*0.2*(max(dy)-min(dy))/max(hist)+min(dy),'k',lw=1.5,drawstyle='steps')
hist,bin_edges=np.histogram(dy,bins=nb)
b=bin_edges[:-1]+0.0*(bin_edges[1]-bin_edges[0])
plt.plot(hist*0.2*(max(dx)-min(dx))/max(hist)+min(dx),b,'k',lw=1.5,drawstyle='steps')
class plt:
'''
Simple class to read in a
TraceWin plot file
Class afterwards hold the following
dictionary items:
- Ne (number of locations)
- Np (number of particles)
- Ib [A] (beam current)
- freq [MHz]
- mc2 [MeV]
- Nelp [m] (locations)
each plt[i], where i is element number, holds:
- Zgen [cm] (location)
- phase0 [deg] (ref phase)
- wgen [MeV] (ref energy)
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
- yp [array, rad]
- phi [array, rad]
- E [array, MeV]
- l [array] (is lost)
Example::
plt=ess.TraceWin.plt('calc/dtl1.plt')
for i in [97,98]:
data=plt[i]$
if data:
print data['x']
'''
def __init__(self, filename):
# easy storage..
self.filename=filename
# used to create dict behaviour..
self._columns=['x','xp','y','yp','phi','E', 'l']
# read in the file..
self._readBinaryFile()
def _readBinaryFile(self):
# Thanks Emma!
import numpy
fin=file(self.filename,'r')
# dummy, Np, Ib, freq, dummy
Header_type = numpy.dtype([
('dummy12', numpy.int16),
('Ne', numpy.int32),
('Np', numpy.int32),
('Ib', numpy.float64),
('freq', numpy.float64),
('mc2', numpy.float64),
])
SubHeader_type = numpy.dtype([
('dummy12', numpy.int8),
('Nelp', numpy.int32),
('Zgen', numpy.float64),
('phase0', numpy.float64),
('wgen', numpy.float64),
])
Header=numpy.fromfile(fin, dtype=Header_type, count=1)
self.Np=Header['Np'][0]
self.Ne=Header['Ne'][0]
self.Ib=Header['Ib'][0]
self.freq=Header['freq'][0]
self.mc2=Header['mc2'][0]
self._data=[]
self.Nelp=[]
i=0
while i<self.Ne:
SubHeader=numpy.fromfile(fin, dtype=SubHeader_type, count=1)
i=SubHeader['Nelp'][0]
self.Nelp.append(i)
Table=numpy.fromfile(fin, dtype=numpy.float32, count=self.Np*7)
Table=Table.reshape(self.Np,7)
data={}
for key in ['Zgen','phase0','wgen']:
data[key]=SubHeader[key][0]
for j in xrange(7):
c=self._columns[j]
data[c]=Table[:,j]
# convert x,y from cm to m
if c in ['x', 'y']:
data[c]*=1e-2
self._data.append(data)
def __getitem__(self, key):
if key in self.Nelp:
ret={}
# some particles are lost, exclude those:
lost_mask=self._data[i]['l']==0
for key in self._data[i]:
if isinstance(self._data[i][key], numpy.ndarray):
ret[key]=self._data[i][key][lost_mask]
else:
ret[key]=self._data[i][key]
return ret
else:
print "No data to plot at element",key
def calc_s(self):
'''
Generates self.s which holds
the position of each element
in metres
'''
import numpy
self.s=[]
for i in self.Nelp:
self.s.append(self[i]['Zgen']/100.0)
self.s=numpy.array(self.s)
def calc_avg(self):
'''
Calculates averages of 6D coordinates at each
element, such that e.g.
self.avg["x"] gives average X at each location.
'''
import numpy
self.avg=dict(x=[], xp=[], y=[], yp=[], E=[], phi=[])
for i in self.Nelp:
data=self[i]
for v in vals:
self.avg[v].append(numpy.average(data[v]))
Calculates relativistic gamma/beta
at each position, based on
AVERAGE beam energy
(NOT necessarily reference)
if not hasattr(self,'avg'):
self.calc_avg()
self.gamma=[]
self.beta=[]
for i,j in zip(self.Nelp,xrange(len(self.Nelp))):
Eavg=self.avg['E'][j]
self.gamma.append((self.mc2+Eavg)/self.mc2)
self.beta.append(numpy.sqrt(1.-1./self.gamma[-1]**2))
self.gamma=numpy.array(self.gamma)
self.beta=numpy.array(self.beta)
def calc_minmax(self,pmin=5,pmax=95):
'''
Calculates min/max values of beam coordinates
in percentile, pmin is lower and pmax upper.
Units: cm
'''
import numpy
self.min=dict(x=[], xp=[], y=[], yp=[], E=[])
self.max=dict(x=[], xp=[], y=[], yp=[], E=[])
for i in self.Nelp:
data=self[i]
for v in self.min.keys():
self.min[v].append(numpy.percentile(data[v],pmin))
self.max[v].append(numpy.percentile(data[v],pmax))
for v in self.min.keys():
self.min[v]=numpy.array(self.min[v])
self.max[v]=numpy.array(self.max[v])
def calc_sigma(self):
'''
Calculates the sigma matrix
Creates self.sigma such that self.sigma[i,j]
returns the sigma matrix for value i,j.
The numbering is:
0: x
1: xp
2: y
3: yp
4: E
5: phi
vals=self._columns[:-1]
self.sigma=[]
for j in xrange(len(self.Nelp)):
i=self.Nelp[j]
data=self[i]
self.sigma.append([[numpy.mean( (data[n]-self.avg[n][j]) * (data[m] - self.avg[m][j]) ) for n in vals] for m in vals])
def calc_std(self):
'''
Calculates the beam sizes
'''
import numpy
if not hasattr(self,'sigma'):
self.calc_sigma()
vals=self._columns[:-1]
self.std={}
for j in xrange(len(vals)):
v=vals[j]
self.std[v]=numpy.sqrt(self.sigma[:,j,j])
def calc_twiss(self):
'''
Calculates emittance, beta, alfa, gamma
for each plane, x-xp, y-yp, and E-phi
if not hasattr(self,'gamma'):
self.calc_rel()
self.twiss_eps=[]
for j in xrange(len(self.Nelp)):
self.twiss_eps.append([numpy.sqrt(numpy.linalg.det(self.sigma[j][i:i+2][:,i:i+2])) for i in (0,2,4)])
self.twiss_eps=numpy.array(self.twiss_eps)
# Calculate normalized emittance:
# TODO: this is NOT correct normalization for longitudinal
self.twiss_eps_normed=self.twiss_eps.copy()
for i in xrange(3):
self.twiss_eps_normed[:,i]*=self.gamma*self.beta
# Calculate beta:
# This is a factor 10 different from what TraceWin plots
self.twiss_beta = [[self.sigma[j][i][i]/self.twiss_eps[j,i/2] for i in (0,2,4)] for j in xrange(len(self.Nelp))]
self.twiss_beta = numpy.array(self.twiss_beta)
# Calculate alpha:
self.twiss_alpha = [[-self.sigma[j][i][i+1]/self.twiss_eps[j,i/2] for i in (0,2,4)] for j in xrange(len(self.Nelp))]
self.twiss_alpha = numpy.array(self.twiss_alpha)
class density_file:
'''
Simple class to read a TraceWin density file
into a pythonized object
'''
def __init__(self, filename, envelope=None):
self.filename=filename
self.fin=file(self.filename, 'r')
if envelope==None: # try to guess
if filename.split('/')[-1].split('.')[0]=='Density_Env':
self.envelope=True
else:
self.envelope=False
else:
self.envelope=envelope
# currently unknown:
self.version=0
# first we simply count how many elements we have:
counter=0
while True:
try:
self._skipAndCount()
counter+=1
except IndexError: # EOF reached..
break
if sys.flags.debug:
print "Number of steps found:", counter
self.fin.seek(0)
# set up the arrays..
self.i=0
# z position [m] :
self.z=numpy.zeros(counter)
# element index number
self.nelp=numpy.zeros(counter)
# current [mA] :
self.ib=numpy.zeros(counter)
# number of lost particles:
self.Np=numpy.zeros(counter)
self.Xouv=numpy.zeros(counter)
self.Youv=numpy.zeros(counter)
self.moy=numpy.zeros((counter,7))
self.moy2=numpy.zeros((counter,7))
self._max=numpy.zeros((counter,7))
self._min=numpy.zeros((counter,7))
if self.version>=5:
self.rms_size=numpy.zeros((counter,7))
self.rms_size2=numpy.zeros((counter,7))
if self.version>=6:
self.min_pos_moy=numpy.zeros((counter,7))
self.max_pos_moy=numpy.zeros((counter,7))
if self.version>=7:
self.rms_emit=numpy.zeros((counter,3))
self.rms_emit2=numpy.zeros((counter,3))
if self.version>=8:
self.energy_accept=numpy.zeros(counter)
self.phase_ouv_pos=numpy.zeros(counter)
self.phase_ouv_neg=numpy.zeros(counter)
self.lost=numpy.zeros((counter,self.Nrun))
self.powlost=numpy.zeros((counter,self.Nrun))
self.lost2=numpy.zeros(counter)
self.Minlost=numpy.zeros(counter)
self.Maxlost=numpy.zeros(counter)
self.powlost2=numpy.zeros(counter)
self.Minpowlost=numpy.zeros(counter)
self.Maxpowlost=numpy.zeros(counter)
while self.i<counter:
self._getFullContent()
self.i+=1
def _getHeader(self):
import numpy
# header..
version=numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
year=numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
# in case we did not read all data, this will detect our mistake:
while year!=2011 or version not in [8,9]:
shift+=1
version=year
year=numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
raise ValueError("ERROR, shifted "+str(shift*2)+" bytes")
self.vlong=numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
self.Nrun=numpy.fromfile(self.fin, dtype=numpy.int32, count=1)[0]
self.version=version
self.year=year
def _skipAndCount(self):
import numpy
self._getHeader()
if self.version==8:
numpy.fromfile(self.fin, dtype=numpy.int16, count=292/2)
if self.version==9:
numpy.fromfile(self.fin, dtype=numpy.int16, count=300/2)
elif self.version==8:
numpy.fromfile(self.fin, dtype=numpy.int16, count=12344/2)
elif self.version==9:
numpy.fromfile(self.fin, dtype=numpy.int16, count=12352/2)
elif self.Nrun>1:
#WARN not 100% sure if this is correct..
numpy.fromfile(self.fin, dtype=numpy.int16, count=((5588+self.Nrun*12)/2))
raise TypeError("It is not possible to read this format..")
def _get_7dim_array(array):
return dict(x=array[0],
y=array[1],
phase=array[2],
energy=array[3],
r=array[4],
z=array[5],
dpp=array[6],
)
def _getFullContent(self):
import numpy
#self._getHeader()
# no need to read the header again:
# (though only if we are SURE about content!)
numpy.fromfile(self.fin, dtype=numpy.int16, count=5)
self.nelp[self.i]=numpy.fromfile(self.fin, dtype=numpy.int32, count=1)[0]
self.ib[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.z[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
# Aperture
self.Xouv[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.Youv[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
if self.version>=9:
dXouv=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
dYouv=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
step=numpy.fromfile(self.fin, dtype=numpy.int32, count=1)[0]
n=7 # x [m], y[m], Phase [deg], Energy [MeV], R[m], Z[m], dp/p
self.moy[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
self.moy2[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
self._max[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
self._min[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
if self.version>=5:
self.rms_size[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
self.rms_size2[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
self.min_pos_moy[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
self.max_pos_moy[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
self.rms_emit[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=3)[:]
self.rms_emit2[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=3)[:]
self.energy_accept[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)
self.phase_ouv_pos[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)
self.phase_ouv_neg[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)
self.Np[self.i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
if self.Np[self.i]:
for i in xrange(self.Nrun):
self.lost[self.i,i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.powlost[self.i,i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.lost2[self.i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.Minlost[self.i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.Maxlost[self.i]=numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.powlost2[self.i]=numpy.fromfile(self.fin, dtype=numpy.float64, count=1)[0]
self.Minpowlost[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.Maxpowlost[self.i]=numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
tab=numpy.fromfile(self.fin, dtype=numpy.uint64, count=n*step)
tab=numpy.fromfile(self.fin, dtype=numpy.uint32, count=n*step)
tabp=numpy.fromfile(self.fin, dtype=numpy.uint32, count=3*step)
def _avg_merge(self,other,param):
'''
returns the average of the parameter
weighted by how many Nruns in self and other object
This allows for different lengths of the two arrays..
'''
mine=getattr(self,param)
new=getattr(other,param)
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
if len(mine)>len(new):
ret = mine.copy()
ret[:len(new)] = (mine[:len(new)]*self.Nrun+new*other.Nrun)/(self.Nrun+other.Nrun)
elif len(mine)<len(new):
ret = new.copy()
ret[:len(mine)] = (mine*self.Nrun+new[:len(mine)]*other.Nrun)/(self.Nrun+other.Nrun)
else:
ret = (mine*self.Nrun+new*other.Nrun)/(self.Nrun+other.Nrun)
return ret
def _sum_merge(self,other,param):
'''
returns the sum of the parameter
This allows for different lengths of the two arrays..
'''
mine=getattr(self,param)
new=getattr(other,param)
if len(mine)>len(new):
ret = mine.copy()
ret[:len(new)] += new
elif len(mine)<len(new):
ret = new.copy()
ret[:len(mine)] += mine
else:
ret = mine+new
return ret
def _concatenate_merge(self,other,param):
'''
returns the concatenation of the two matrices
This allows for different lengths of the two arrays/matrices..
'''
import numpy
mine=getattr(self,param)
new=getattr(other,param)
ret=numpy.zeros(( max([len(mine),len(new)]), len(mine[0])+len(new[0]) ))
ret[:len(mine),:len(mine[0])]=mine
ret[:len(new),len(mine[0]):]=new
return ret
def _fun_merge(self,other,function,param):
'''
returns the function applied on the parameter
This allows for different lengths of the two arrays..
'''
mine=getattr(self,param)
new=getattr(other,param)
if len(mine)>len(new):
ret = mine.copy()
ret[:len(new)] = function(mine[:len(new)],new)
elif len(mine)<len(new):
ret = new.copy()
ret[:len(mine)] = function(mine,new[:len(mine)])
else:
ret = function(mine,new)
return ret
def merge(self,objects):
'''
Merge with list of objects
'''
import numpy
if not isinstance(objects,list):
raise TypeError("You tried to merge a non-list")
# for now we only allow objects with same version..
for o in objects:
if self.version != o.version:
raise ValueError("Cannot merge files with differing version")
# merge info..
for o in objects:
if len(self.ib)<len(o.ib):
raise ValueError("Sorry, not implemented yet. Complain to Yngve")
self.ib=self._avg_merge(o,'ib')
# this looks strange to me, but it is what TraceWin does..
self.moy=self._sum_merge(o,'moy')
self.moy2=self._sum_merge(o,'moy')
self._max=self._fun_merge(o,numpy.maximum,'_max')
self._min=self._fun_merge(o,numpy.minimum,'_min')
if self.version>=5:
# this looks strange to me, but it is what TraceWin does..
self.rms_size=self._sum_merge(o,'rms_size')
self.rms_size2=self._sum_merge(o,'rms_size2')
self.max_pos_moy=self._fun_merge(o,numpy.maximum,'max_pos_moy')
self.min_pos_moy=self._fun_merge(o,numpy.minimum,'min_pos_moy')
if self.version>=7:
# this looks strange to me, but it is what TraceWin does..
self.rms_emit=self._sum_merge(o,'rms_emit')
self.rms_emit2=self._sum_merge(o,'rms_emit2')
if self.version>=8:
# Warning: TraceWin does NOT merge these data in any way
self.energy_accept=self._avg_merge(o,'energy_accept')
self.phase_ouv_pos=self._avg_merge(o,'phase_ouv_pos')
self.phase_ouv_neg=self._avg_merge(o,'phase_ouv_neg')
# Note, we don't get into the problem of differing table sizes
# particles are lost, because we have written zeroes for
# the rest of the tables
self.lost=self._concatenate_merge(o,'lost')
self.powlost=self._concatenate_merge(o,'powlost')
self.lost2=self._sum_merge(o,'lost2')
self.powlost2=self._sum_merge(o,'powlost2')
self.Minlost=self._fun_merge(o,numpy.minimum,'Minlost')
self.Maxlost=self._fun_merge(o,numpy.maximum,'Maxlost')
self.Minpowlost=self._fun_merge(o,numpy.minimum,'Minpowlost')
self.Maxpowlost=self._fun_merge(o,numpy.maximum,'Maxpowlost')
# Note: We are ignoring tab/tabp data...
# merge final info (make sure to do this last!)
def savetohdf(self,filename='Density.h5',group='TraceWin', force=False):
fout = h5py.File(filename,'a')
if group in fout:
if force:
del fout[group]
else:
if sys.flags.debug:
print("Group {} already exist in {}".format(group,filename))
return
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
group = fout.create_group(group)
# header attributes..
group.attrs['version']=self.version
group.attrs['year']=self.year
group.attrs['Nrun']=self.Nrun
group.attrs['vlong']=self.vlong
length=len(self.z)
partran = sum(self.Np)>0
# one number per location
arrays= ['z', 'nelp', 'ib', 'Np', 'Xouv', 'Youv']
array_units=['m', '', 'mA', '', 'm', 'm']
if self.version>=8:
arrays += ['energy_accept', 'phase_ouv_pos', 'phase_ouv_neg']
array_units += [ 'eV', 'deg', 'deg']
if partran:
arrays += [ 'lost2', 'Minlost', 'Maxlost', 'powlost2', 'Minpowlost', 'Maxpowlost']
array_units += [ '', '', '', 'W*w', 'W', 'W']
# 7 numbers per location..
coordinates= ['moy', 'moy2', '_max', '_min']
coordinate_units=['m', 'm*m', 'm', 'm']
if self.version>=5 and partran:
coordinates += ['rms_size','rms_size2']
coordinate_units += [ 'm', 'm*m']
if self.version>=6 and partran:
coordinates += ['min_pos_moy', 'max_pos_moy']
coordinate_units += [ 'm', 'm']
for val,unit in zip(arrays,array_units):
data_set=group.create_dataset(val, (length,), dtype='f')
data_set[...]=getattr(self,val)
if unit:
data_set.attrs['unit']=unit
for val,unit in zip(coordinates,coordinate_units):
data_set=group.create_dataset(val, (length,7), dtype='f')
data_set[...]=getattr(self,val)
if unit:
data_set.attrs['unit']=unit
if self.version>=7 and partran:
# 3 numbers per location..
emit_data=['rms_emit', 'rms_emit2']
emit_units=['m*rad', 'm*m*rad*rad']
for val,unit in zip(emit_data,emit_units):
data_set=group.create_dataset(val, (length,3), dtype='f')
data_set[...]=getattr(self,val)
if unit:
data_set.attrs['unit']=unit
if partran:
data=['lost', 'powlost']
units=['', 'W']
for val,unit in zip(data, units):
data_set=group.create_dataset(val, (length,self.Nrun), dtype='f')
data_set[...]=getattr(self,val)
if unit:
data_set.attrs['unit']=unit
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
class remote_data_merger:
def __init__(self, base='.'):
self._base=base
self._files=[]
def add_file(self,filepath):
import os
if os.path.exists(filepath):
fname=filepath
else:
fullpath=os.path.join(self._base,filepath)
if os.path.exists(fullpath):
fname=fullpath
else:
raise ValueError("Could not find file "+filepath)
if fname not in self._files:
self._files.append(fname)
def generate_partran_out(self,filename=None):
'''
Creates a string to be written to file
each line is a list.
If filename is given, writes directly to output file.
'''
import numpy as np
h1=[]
h2=[]
d1=[]
d2=[]
d3=[]
if self._files:
for f in self._files:
string=file(f,'r').read()
split=string.split('$$$')
if split[9]!='Data_Error':
raise ValueError("Magic problem, please complain to Yngve")
thisdata=split[10].strip().split('\n')
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
if not h1:
h1=[thisdata[0]+" (std in paranthesis)"]
h2=thisdata[2:10]
d1.append(thisdata[1].split())
d2.append(thisdata[10])
d3.append(thisdata[11])
# fix d1:
for i in xrange(len(d1)):
for j in xrange(len(d1[0])):
d1[i][j]=float(d1[i][j])
d1=np.array(d1)
means=d1.mean(axis=0)
stds=d1.std(axis=0)
d1=[]
for i in xrange(len(stds)):
if stds[i]/means[i]<1e-10:
stds[i]=0.0
for i in xrange(len(stds)):
# some small std are removed..
if stds[i]/means[i]>1e-8:
d1.append('%f(%f)' % (means[i],stds[i]))
else: #error is 0
d1.append(str(means[i]))
d1=[' '.join(d1)]
# create data:
data=h1+d1+h2+d2+d3
if filename:
file(filename,'w').write('\n'.join(data))
return data
'''
Read partran1.out files..
'''
def __init__(self,filename):
self.filename=filename
self._readAsciiFile()