"git@gitlab.esss.lu.se:ics-infrastructure/etherlabmaster.git" did not exist on "dbd467477ff25b35633749c75ab1fd33aff110fe"
Newer
Older
TraceWin distribution file
Class afterwards hold the following
dictionary items:
- x [m]
- xp [rad]
- y [m]
- yp [rad]
- phi [rad]
- E [MeV] (kinetic energy)
def __init__(self,
filename=None,
freq=352.21,
mass=938.272,
Ib=0.0):
if filename:
# read in the file..
self._readBinaryFile()
else:
import numpy
def append(self, x=0.0, xp=0.0, y=0.0, yp=0.0, E=0.0, phi=0.0):
'''
Append one particle to the distribution
- Kinetic Energy in MeV
- x,y in m
- xp,yp in rad
- phi in rad
'''
import numpy
self._data = numpy.append(self._data, [[x, xp, y, yp, phi, E]], 0)
self.Np += 1
def append_many(self, array):
'''
Append a matrix of particle vectors
Matrix on form 6xN, where N is number of particles.
Each row should hold [x,xp,y,yp,phi,E]
Units m,rad, MeV
'''
import numpy
self._data = numpy.append(self._data, array, 0)
self.Np += len(array)
def remove(self, i=None):
'''
Removes all particles from the distribution, or the line specified by i
'''
import numpy
if i is None:
self._data=numpy.delete(self._data,numpy.s_[:], 0)
self.Np=0
else:
self.Np-=1
# dummy, Np, Ib, freq, dummy
Header_type = numpy.dtype([
('dummy12', numpy.int16),
('Np', numpy.int32),
('Ib', numpy.float64),
('freq', numpy.float64),
('dummy3', numpy.int8)
])
Header = numpy.fromfile(fin, dtype=Header_type, count=1)
self.Np = Header['Np'][0]
self.Ib = Header['Ib'][0]
self.freq = Header['freq'][0]
# Some toutatis distributions has an undocumented 7th line of 0's
Table = numpy.fromfile(fin, dtype=numpy.float64, count=self.Np*7+1)
elif len(Table)==self.Np*6+1: # this is true in most cases
raise ValueError("Incorrect table dimensions found:", len(Table))
# makes the class function as a dictionary
# e.g. dst['x'] returns the x array..
except:
raise ValueError("Available keys: "+str(self._columns))
def __setitem__(self, key, value):
try:
i=self._columns.index(key)
except:
raise ValueError("Available keys: "+str(self._columns))
def save(self, filename, toutatis=False):
'''
Save the distribution file
so it can be read by TraceWin again
:param filename: Name of file
:param toutatis: Include 7th column of zeros
Stolen from Ryoichi's func.py (with permission)
'''
from struct import pack
fout=open(filename, 'wb')
fout.write(pack('b', 125))
fout.write(pack('b', 100))
fout.write(pack('i', self.Np))
fout.write(pack('d', self.Ib))
fout.write(pack('d', self.freq))
fout.write(pack('b', 125))
if toutatis and data.shape[1]==6:
data = numpy.append(data,numpy.zeros((len(data),1)),1)
elif not toutatis and data.shape[1]==7:
fout.write(pack('{}d'.format(len(data)),*data))
def subplot(self, index, x, y=None, nb=100, mask=None):
'''
Create a subplot histogram similar to TraceWin.
Example::
import numpy as np
from ess import TraceWin
from matplotlib import pyplot as plt
data=TraceWin.dst('part_dtl1.dst')
m=np.where(data['E']>3.5)
data.subplot(221,'x','xp',mask=m)
data.subplot(222,'y','yp',mask=m)
data.subplot(223,'phi','E',mask=m)
data.subplot(224,'x','y',mask=m)
plt.show()
'''
from matplotlib.colors import LogNorm
import matplotlib.pyplot as plt
import numpy as np
units={ 'x': 'mm', 'y': 'mm',
'xp': 'mrad', 'yp': 'mrad',
'E': 'MeV', 'phi': 'deg'
}
# get X and Y data
dx=np.array(self[x])
if x in ['x','y','xp','yp']:
dx*=1e3
if y in ['x','y','xp','yp']:
dy*=1e3
if x in ['phi']:
dx-=np.average(dx)
dx*=180/np.pi
if y in ['phi']:
dy-=np.average(dy)
dy*=180/np.pi
if x in ['E'] and max(dx)<0.1:
dx*=1e3
units['E']='keV'
if y in ['E'] and max(dy)<0.1:
dy*=1e3
units['E']='keV'
if y!=None:
plt.hist2d(dx, dy, bins=nb, norm=LogNorm())
plt.title('{} [{}] - {} [{}]'.format(x,units[x],y,units[y]))
hist,bin_edges=np.histogram(dx,bins=nb)
b=bin_edges[:-1]+0.5*(bin_edges[1]-bin_edges[0])
plt.plot(b,hist*0.2*(max(dy)-min(dy))/max(hist)+min(dy),'k',lw=1.5,drawstyle='steps')
hist,bin_edges=np.histogram(dy,bins=nb)
b=bin_edges[:-1]+0.0*(bin_edges[1]-bin_edges[0])
plt.plot(hist*0.2*(max(dx)-min(dx))/max(hist)+min(dx),b,'k',lw=1.5,drawstyle='steps')
else:
# plot a simple 1D histogram..
plt.hist(dx, bins=nb)
plt.title('{} [{}]'.format(x,units[x]))
class plt:
'''
Simple class to read in a
TraceWin plot file
Class afterwards hold the following
dictionary items:
- Ne (number of locations)
- Np (number of particles)
- Ib [A] (beam current)
- freq [MHz]
- mc2 [MeV]
- Nelp [m] (locations)
each plt[i], where i is element number, holds:
- Zgen [cm] (location)
- phase0 [deg] (ref phase)
- wgen [MeV] (ref energy)
- yp [array, rad]
- phi [array, rad]
- E [array, MeV]
- l [array] (is lost)
plt=ess.TraceWin.plt('calc/dtl1.plt')
for i in [97,98]:
data=plt[i]
if data:
print(data['x'])
'''
def __init__(self, filename):
# easy storage..
self.filename=filename
# used to create dict behaviour..
self._columns=['x','xp','y','yp','phi','E', 'l']
# read in the file..
self._readBinaryFile()
def _readBinaryFile(self):
# Thanks Emma!
import numpy
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# dummy, Np, Ib, freq, dummy
Header_type = numpy.dtype([
('dummy12', numpy.int16),
('Ne', numpy.int32),
('Np', numpy.int32),
('Ib', numpy.float64),
('freq', numpy.float64),
('mc2', numpy.float64),
])
SubHeader_type = numpy.dtype([
('dummy12', numpy.int8),
('Nelp', numpy.int32),
('Zgen', numpy.float64),
('phase0', numpy.float64),
('wgen', numpy.float64),
])
Header=numpy.fromfile(fin, dtype=Header_type, count=1)
self.Np=Header['Np'][0]
self.Ne=Header['Ne'][0]
self.Ib=Header['Ib'][0]
self.freq=Header['freq'][0]
self.mc2=Header['mc2'][0]
self._data=[]
self.Nelp=[]
i=0
while i<self.Ne:
SubHeader=numpy.fromfile(fin, dtype=SubHeader_type, count=1)
# unfinished files need this fix (simulation still running)
i=SubHeader['Nelp'][0]
self.Nelp.append(i)
Table=numpy.fromfile(fin, dtype=numpy.float32, count=self.Np*7)
Table=Table.reshape(self.Np,7)
data={}
for key in ['Zgen','phase0','wgen']:
data[key]=SubHeader[key][0]
for j in range(7):
# convert x,y from cm to m
if c in ['x', 'y']:
data[c]*=1e-2
self._data.append(data)
def __getitem__(self, key):
if key in self.Nelp:
ret={}
# some particles are lost, exclude those:
lost_mask=self._data[i]['l']==0
for key in self._data[i]:
if isinstance(self._data[i][key], numpy.ndarray):
ret[key]=self._data[i][key][lost_mask]
else:
ret[key]=self._data[i][key]
return ret
def calc_s(self):
'''
Generates self.s which holds
the position of each element
in metres
'''
import numpy
self.s=[]
for i in self.Nelp:
self.s.append(self[i]['Zgen']/100.0)
self.s=numpy.array(self.s)
def calc_avg(self):
'''
Calculates averages of 6D coordinates at each
element, such that e.g.
self.avg["x"] gives average X at each location.
'''
import numpy
self.avg=dict(x=[], xp=[], y=[], yp=[], E=[], phi=[])
for i in self.Nelp:
data=self[i]
for v in vals:
self.avg[v].append(numpy.average(data[v]))
Calculates relativistic gamma/beta
at each position, based on
AVERAGE beam energy
(NOT necessarily reference)
for i,j in zip(self.Nelp,range(len(self.Nelp))):
Eavg = self.avg['E'][j]
self.gamma.append((self.mc2 + Eavg) / self.mc2)
self.beta.append(numpy.sqrt(1. - 1. / self.gamma[-1]**2))
self.gamma = numpy.array(self.gamma)
self.beta = numpy.array(self.beta)
'''
Calculates min/max values of beam coordinates
in percentile, pmin is lower and pmax upper.
Units: cm
'''
import numpy
self.min = dict(x=[], xp=[], y=[], yp=[], E=[])
self.max = dict(x=[], xp=[], y=[], yp=[], E=[])
self.min[v].append(numpy.percentile(data[v], pmin))
self.max[v].append(numpy.percentile(data[v], pmax))
for v in self.min.keys():
self.min[v]=numpy.array(self.min[v])
self.max[v]=numpy.array(self.max[v])
def calc_sigma(self):
'''
Calculates the sigma matrix
Creates self.sigma such that self.sigma[i,j]
returns the sigma matrix for value i,j.
The numbering is:
0: x
1: xp
2: y
3: yp
4: E
5: phi
for j in range(len(self.Nelp)):
self.sigma.append([[numpy.mean((data[n] - self.avg[n][j]) * (data[m] - self.avg[m][j])) for n in vals] for m in vals])
def calc_std(self):
'''
Calculates the beam sizes
'''
import numpy
if not hasattr(self, 'sigma'):
self.calc_sigma()
for j in range(len(vals)):
v = vals[j]
self.std[v] = numpy.sqrt(self.sigma[:, j, j])
def calc_twiss(self):
'''
Calculates emittance, beta, alfa, gamma
for each plane, x-xp, y-yp, and E-phi
if not hasattr(self, 'sigma'):
self.calc_sigma()
if not hasattr(self, 'gamma'):
self.calc_rel()
for j in range(len(self.Nelp)):
self.twiss_eps.append([numpy.sqrt(numpy.linalg.det(self.sigma[j][i:i + 2][:, i:i + 2])) for i in (0, 2, 4)])
self.twiss_eps = numpy.array(self.twiss_eps)
# Calculate normalized emittance:
# TODO: this is NOT correct normalization for longitudinal
for i in range(3):
self.twiss_eps_normed[:, i] *= self.gamma * self.beta
# Calculate beta:
# This is a factor 10 different from what TraceWin plots
self.twiss_beta = [[self.sigma[j][i][i] / self.twiss_eps[j, i // 2] for i in (0, 2, 4)] for j in range(len(self.Nelp))]
self.twiss_beta = numpy.array(self.twiss_beta)
self.twiss_alpha = [[-self.sigma[j][i][i + 1] / self.twiss_eps[j, i // 2] for i in (0, 2, 4)] for j in range(len(self.Nelp))]
self.twiss_alpha = numpy.array(self.twiss_alpha)
def get_dst(self, index):
'''
Returns the dst corresponding to the given index
'''
dset = self[index]
_dst = dst()
_dst.freq = self.freq
_dst.Ib = self.Ib * 1000
_dst.Np = len(dset['x'])
_dst.mass = self.mc2
_dst._data = numpy.array([dset['x'],
dset['xp'],
dset['y'],
dset['yp'],
dset['phi'],
dset['E']]).transpose()
'''
Saves the dst at the specified index to file
Returns the same dst object.
'''
class density_file:
'''
Simple class to read a TraceWin density file
into a pythonized object
'''
def __init__(self, filename, envelope=None):
self.filename = filename
self.fin = open(self.filename, 'r')
if envelope is None: # try to guess
if filename.split('/')[-1].split('.')[0] == 'Density_Env':
self.envelope = True
# first we simply count how many elements we have:
self.Xouv = numpy.zeros(counter)
self.Youv = numpy.zeros(counter)
if self.version >= 9:
self.dXouv = numpy.zeros(counter)
self.dYouv = numpy.zeros(counter)
self.moy = numpy.zeros((counter, 7))
self.moy2 = numpy.zeros((counter, 7))
self._max = numpy.zeros((counter, 7))
self._min = numpy.zeros((counter, 7))
if self.version >= 10:
self.maxR = numpy.zeros((counter, 7))
self.minR = numpy.zeros((counter, 7))
if self.version >= 5:
self.rms_size = numpy.zeros((counter, 7))
self.rms_size2 = numpy.zeros((counter, 7))
if self.version >= 6:
self.min_pos_moy = numpy.zeros((counter, 7))
self.max_pos_moy = numpy.zeros((counter, 7))
if self.version >= 7:
self.rms_emit = numpy.zeros((counter, 3))
self.rms_emit2 = numpy.zeros((counter, 3))
if self.version >= 8:
self.energy_accept = numpy.zeros(counter)
self.phase_ouv_pos = numpy.zeros(counter)
self.phase_ouv_neg = numpy.zeros(counter)
self.lost = numpy.zeros((counter, self.Nrun))
self.powlost = numpy.zeros((counter, self.Nrun))
self.lost2 = numpy.zeros(counter)
self.Minlost = numpy.zeros(counter)
self.Maxlost = numpy.zeros(counter)
self.powlost2 = numpy.zeros(counter)
self.Minpowlost = numpy.zeros(counter)
self.Maxpowlost = numpy.zeros(counter)
self.i += 1
if sys.flags.debug and self.i % 100 == 0:
print('Read status', self.i)
def _getHeader(self):
import numpy
# header..
version = numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
year = numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
# in case we did not read all data, this will detect our mistake:
shift = 0
while year != 2011 or version not in [8, 9, 10, 11, 12]:
shift += 1
version = year
year = numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
print(year, version)
raise ValueError("ERROR, shifted " + str(shift * 2) + " bytes")
self.vlong = numpy.fromfile(self.fin, dtype=numpy.int16, count=1)[0]
self.Nrun = numpy.fromfile(self.fin, dtype=numpy.int32, count=1)[0]
def _skipAndCount(self):
import numpy
self._getHeader()
if self.version == 8:
numpy.fromfile(self.fin, dtype=numpy.int16, count=292 // 2)
elif self.version == 9:
numpy.fromfile(self.fin, dtype=numpy.int16, count=300 // 2)
elif self.version == 10:
numpy.fromfile(self.fin, dtype=numpy.int16, count=356 // 2)
else:
raise TypeError("It is not possible to read this format..")
elif self.Nrun > 1:
# WARN not 100% sure if this is correct..
if self.version <= 9:
numpy.fromfile(self.fin, dtype=numpy.int16, count=((5588 + self.Nrun * 12) // 2))
elif self.version == 10:
numpy.fromfile(self.fin, dtype=numpy.int16, count=((20796 + self.Nrun * 12) // 2))
else:
raise TypeError("It is not possible to read this format..")
elif self.version == 8:
numpy.fromfile(self.fin, dtype=numpy.int16, count=12344 // 2)
elif self.version == 9:
numpy.fromfile(self.fin, dtype=numpy.int16, count=12352 // 2)
elif self.version == 10:
numpy.fromfile(self.fin, dtype=numpy.int16, count=12408 // 2)
raise TypeError("It is not possible to read this format..")
def _get_7dim_array(array):
return dict(x=array[0],
y=array[1],
phase=array[2],
energy=array[3],
r=array[4],
z=array[5],
dpp=array[6],
)
def _getFullContent(self):
import numpy
# (though only if we are SURE about content!)
numpy.fromfile(self.fin, dtype=numpy.int16, count=5)
self.nelp[self.i] = numpy.fromfile(self.fin, dtype=numpy.int32, count=1)[0]
self.ib[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.z[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
self.Xouv[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.Youv[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
if self.version >= 9:
dXouv = numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
dYouv = numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
step = numpy.fromfile(self.fin, dtype=numpy.int32, count=1)[0]
n = 7 # x [m], y[m], Phase [deg], Energy [MeV], R[m], Z[m], dp/p
self.moy[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
self.moy2[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
self._max[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
self._min[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
if self.version >= 10:
self.maxR[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
self.minR[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=n)[:]
if self.version >= 5:
self.rms_size[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
self.rms_size2[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
if self.version >= 6:
self.min_pos_moy[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
self.max_pos_moy[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=n)
if self.version >= 7:
self.rms_emit[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=3)[:]
self.rms_emit2[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=3)[:]
if self.version >= 8:
self.energy_accept[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=1)
self.phase_ouv_pos[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=1)
self.phase_ouv_neg[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=1)
self.Np[self.i] = numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
for i in range(self.Nrun):
self.lost[self.i, i] = numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.powlost[self.i, i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.lost2[self.i] = numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.Minlost[self.i] = numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.Maxlost[self.i] = numpy.fromfile(self.fin, dtype=numpy.int64, count=1)[0]
self.powlost2[self.i] = numpy.fromfile(self.fin, dtype=numpy.float64, count=1)[0]
self.Minpowlost[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
self.Maxpowlost[self.i] = numpy.fromfile(self.fin, dtype=numpy.float32, count=1)[0]
if self.vlong == 1:
tab = numpy.fromfile(self.fin, dtype=numpy.uint64, count=n * step)
tab = numpy.fromfile(self.fin, dtype=numpy.uint32, count=n * step)
if self.ib[self.i] > 0:
tabp = numpy.fromfile(self.fin, dtype=numpy.uint32, count=3 * step)
'''
returns the average of the parameter
weighted by how many Nruns in self and other object
This allows for different lengths of the two arrays..
mine = getattr(self, param)
new = getattr(other, param)
if len(mine) > len(new):
ret[:len(new)] = (mine[:len(new)] * self.Nrun + new * other.Nrun) / (self.Nrun + other.Nrun)
elif len(mine) < len(new):
ret[:len(mine)] = (mine * self.Nrun + new[:len(mine)] * other.Nrun) / (self.Nrun + other.Nrun)
ret = (mine * self.Nrun + new * other.Nrun) / (self.Nrun + other.Nrun)
'''
returns the sum of the parameter
This allows for different lengths of the two arrays..
'''
mine = getattr(self, param)
new = getattr(other, param)
if len(mine) > len(new):
ret = mine.copy()
ret[:len(new)] += new
ret = new.copy()
ret[:len(mine)] += mine
else:
'''
returns the concatenation of the two matrices
This allows for different lengths of the two arrays/matrices..
'''
import numpy
mine = getattr(self, param)
new = getattr(other, param)
ret = numpy.zeros((max([len(mine), len(new)]), len(mine[0]) + len(new[0])))
ret[:len(mine), :len(mine[0])] = mine
ret[:len(new), len(mine[0]):] = new
'''
returns the function applied on the parameter
This allows for different lengths of the two arrays..
'''
mine = getattr(self, param)
new = getattr(other, param)
if len(mine) > len(new):
ret[:len(new)] = function(mine[:len(new)], new)
elif len(mine) < len(new):
'''
Merge with list of objects
'''
import numpy
raise TypeError("You tried to merge a non-list")
# for now we only allow objects with same version..
for o in objects:
if self.version != o.version:
raise ValueError("Cannot merge files with differing version")
# merge info..
for o in objects:
raise ValueError("Sorry, not implemented yet. Complain to Yngve")
# this looks strange to me, but it is what TraceWin does..
self.moy = self._sum_merge(o, 'moy')
self.moy2 = self._sum_merge(o, 'moy')
self._max = self._fun_merge(o, numpy.maximum, '_max')
self._min = self._fun_merge(o, numpy.minimum, '_min')
# this looks strange to me, but it is what TraceWin does..
self.rms_size = self._sum_merge(o, 'rms_size')
self.rms_size2 = self._sum_merge(o, 'rms_size2')
if self.version >= 6:
self.max_pos_moy = self._fun_merge(o, numpy.maximum, 'max_pos_moy')
self.min_pos_moy = self._fun_merge(o, numpy.minimum, 'min_pos_moy')
# this looks strange to me, but it is what TraceWin does..
self.rms_emit = self._sum_merge(o, 'rms_emit')
self.rms_emit2 = self._sum_merge(o, 'rms_emit2')
# Warning: TraceWin does NOT merge these data in any way
self.energy_accept = self._avg_merge(o, 'energy_accept')
self.phase_ouv_pos = self._avg_merge(o, 'phase_ouv_pos')
self.phase_ouv_neg = self._avg_merge(o, 'phase_ouv_neg')
# Note, we don't get into the problem of differing table sizes
# particles are lost, because we have written zeroes for
# the rest of the tables
self.lost = self._concatenate_merge(o, 'lost')
self.powlost = self._concatenate_merge(o, 'powlost')
self.lost2 = self._sum_merge(o, 'lost2')
self.powlost2 = self._sum_merge(o, 'powlost2')
self.Minlost = self._fun_merge(o, numpy.minimum, 'Minlost')
self.Maxlost = self._fun_merge(o, numpy.maximum, 'Maxlost')
self.Minpowlost = self._fun_merge(o, numpy.minimum, 'Minpowlost')
self.Maxpowlost = self._fun_merge(o, numpy.maximum, 'Maxpowlost')
# Note: We are ignoring tab/tabp data...
# merge final info (make sure to do this last!)
self.Np = self._sum_merge(o, 'Np')
self.Nrun += o.Nrun
def savetohdf(self, filename='Density.h5', group='TraceWin', force=False):
if force:
del fout[group]
else:
if sys.flags.debug:
print("Group {} already exist in {}".format(group, filename))
group = fout.create_group(group)
# header attributes..
group.attrs['version'] = self.version
group.attrs['year'] = self.year
group.attrs['Nrun'] = self.Nrun
group.attrs['vlong'] = self.vlong
arrays = ['z', 'nelp', 'ib', 'Np', 'Xouv', 'Youv']
array_units = ['m', '', 'mA', '', 'm', 'm']
if self.version >= 8:
arrays += ['energy_accept', 'phase_ouv_pos', 'phase_ouv_neg']
array_units += [ 'eV', 'deg', 'deg']
if partran:
arrays += [ 'lost2', 'Minlost', 'Maxlost', 'powlost2', 'Minpowlost', 'Maxpowlost']
array_units += [ '', '', '', 'W*w', 'W', 'W']
# 7 numbers per location..
coordinates = ['moy', 'moy2', '_max', '_min']
coordinate_units = ['m', 'm*m', 'm', 'm']
if self.version >= 5 and partran:
coordinates += ['rms_size', 'rms_size2']
coordinate_units += [ 'm', 'm*m']
if self.version >= 6 and partran:
coordinates += ['min_pos_moy', 'max_pos_moy']
coordinate_units += [ 'm', 'm']
for val, unit in zip(arrays, array_units):
data_set = group.create_dataset(val, (length,), dtype='f')
data_set[...] = getattr(self, val)
for val, unit in zip(coordinates, coordinate_units):
data_set = group.create_dataset(val, (length, 7), dtype='f')
data_set[...] = getattr(self, val)
emit_data = ['rms_emit', 'rms_emit2']
emit_units = ['m*rad', 'm*m*rad*rad']
for val, unit in zip(emit_data, emit_units):
data_set = group.create_dataset(val, (length, 3), dtype='f')
data_set[...] = getattr(self, val)
data = ['lost', 'powlost']
units = ['', 'W']
for val, unit in zip(data, units):
data_set = group.create_dataset(val, (length, self.Nrun), dtype='f')
data_set[...] = getattr(self, val)